Shabadi Rajashekara

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7440984/publications.pdf

Version: 2024-02-01

430843 361001 1,318 51 18 35 citations g-index h-index papers 53 53 53 1461 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Effect of Processing Routes on the Microstructure and Thermoelectric Properties of Half-Heusler TiFe0.5Ni0.5Sb1a^xSnx (xÂ=Â0, 0.05, 0.1, 0.2) Alloys. Journal of Materials Engineering and Performance, 2022, 31, 305-317.	2.5	7
2	Thermoelectric properties of a high entropy half-Heusler alloy processed by a fast powder metallurgy route. Journal of Alloys and Compounds, 2022, 924, 166108.	5 . 5	8
3	Microstructural Aspects of Metal-Matrix Composites. , 2021, , 274-297.		3
4	Corrosion Behavior, Microstructure and Mechanical Properties of Novel Mg-Zn-Ca-Er Alloy for Bio-Medical Applications. Metals, 2021, 11, 519.	2.3	5
5	Additively Manufactured Magnesium-Based Bio-Implants and their Challenges., 2021, 6, 917-932.		9
6	Microstructure and Corrosion Behavior of Extruded Mg-Sn-Y Alloys. Metals, 2021, 11, 1095.	2.3	2
7	Utilizing Iron as Reinforcement to Enhance Ambient Mechanical Response and Impression Creep Response of Magnesium. Metals, 2021, 11, 1448.	2.3	3
8	Modification of Electrical and Mechanical Properties of Selective Laserâ€Melted CuCr0.3 Alloy Using Carbon Nanoparticles. Advanced Engineering Materials, 2020, 22, 1900946.	3. 5	21
9	Thermoelectric properties of half-Heusler high-entropy Ti2NiCoSn1-xSb1+ (xÂ=Â0.5, 1) alloys with VEC>18. Scripta Materialia, 2020, 186, 375-380.	5.2	19
10	Simultaneous increase in thermopower and electrical conductivity through Ta-doping and nanostructuring in half-Heusler TiNiSn alloys. Materialia, 2019, 7, 100410.	2.7	15
11	Ti2NiCoSnSb - a new half-Heusler type high-entropy alloy showing simultaneous increase in Seebeck coefficient and electrical conductivity for thermoelectric applications. Scientific Reports, 2019, 9, 5331.	3.3	58
12	Biocompatible silica-based magnesium composites. Journal of Alloys and Compounds, 2019, 772, 49-57.	5 . 5	14
13	Effect of fluoride coatings on the corrosion behavior of Mg–Zn–Er alloys. Surfaces and Interfaces, 2019, 14, 72-81.	3.0	22
14	Strength of Mg–3%Al alloy in presence of graphene nano-platelets as reinforcement. Materials Science and Technology, 2018, 34, 1086-1095.	1.6	14
15	A strong and deformable in-situ magnesium nanocomposite igniting above 1000 °C. Scientific Reports, 2018, 8, 7038.	3.3	30
16	Evolution of texture and asymmetry and its impact on the fatigue behaviour of an in-situ magnesium nanocomposite. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2018, 727, 61-69.	5.6	22
17	In situ age hardening and grain refinement in as-sprayed Al-Sc binary alloy deposits. Journal of Alloys and Compounds, 2018, 735, 1596-1602.	5.5	3
18	Structure-property correlation in magnesium nanocomposites synthesized by disintegrated melt deposition technique. Materials Today: Proceedings, 2018, 5, 16280-16285.	1.8	6

#	Article	IF	Citations
19	Tribological characteristics of magnesium nanocomposites. Materials Today: Proceedings, 2018, 5, 16575-16579.	1.8	2
20	Influence of steam-based pre-treatment using acidic chemistries on the adhesion performance of powder coated aluminium alloy AA6060. International Journal of Adhesion and Adhesives, 2017, 74, 167-176.	2.9	5
21	Strengthening due to the in-situ evolution of ß1′ Mg-Zn rich phase in a ZnO nanoparticles introduced Mg-Y alloy. Scripta Materialia, 2017, 133, 29-32.	5.2	20
22	The dynamic compressive response of a high-strength magnesium alloy and its nanocomposite. Materials Science & Description A: Structural Materials: Properties, Microstructure and Processing, 2017, 702, 65-72.	5 . 6	23
23	Star-shaped sucrose-capped CaO nanoparticles from <i>Azadirachta indica</i> : A novel green synthesis. Inorganic and Nano-Metal Chemistry, 2017, 47, 708-712.	1.6	12
24	Powder metallurgy hollow fly ash cenospheres' particles reinforced magnesium composites. Powder Metallurgy, 2016, 59, 188-196.	1.7	28
25	Enhancing overall static/dynamic/damping/ignition response of magnesium through the addition of lower amounts (<2%) of yttrium. Journal of Alloys and Compounds, 2016, 689, 350-358.	5. 5	42
26	Influence of Cerium on the Deformation and Corrosion of Magnesium. Journal of Engineering Materials and Technology, Transactions of the ASME, 2016, 138, .	1.4	19
27	Structural, functional and mechanical properties of spark plasma sintered gadolinia (Gd 2 O 3). Ceramics International, 2016, 42, 1384-1391.	4.8	17
28	Microstructural observations and tensile fracture behavior of FSW twin roll cast AZ31 Mg sheets. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2016, 649, 190-200.	5 . 6	44
29	Effect of interfacial oxide thickness on the photocatalytic activity of magnetronâ€sputtered TiO⟨sub⟩2⟨ sub⟩ coatings on aluminum substrate. Physica Status Solidi (A) Applications and Materials Science, 2015, 212, 2805-2815.	1.8	0
30	Friction stir processed Al–TiO2 surface composites: Anodising behaviour and optical appearance. Applied Surface Science, 2015, 324, 554-562.	6.1	26
31	Thermal conductivity in yttria dispersed copper. Materials & Design, 2015, 65, 869-877.	5.1	17
32	Interfacial Structure and Photocatalytic Activity of Magnetron Sputtered TiO ₂ on Conducting Metal Substrates. ACS Applied Materials & Early; Interfaces, 2014, 6, 22224-22234.	8.0	13
33	AZ91C magnesium alloy modified by Cd. Materials & Design, 2014, 53, 445-451.	5.1	15
34	Triple ion beam cutting of diamond/Al composites for interface characterization. Materials Characterization, 2014, 89, 132-137.	4.4	15
35	Structure of anodized Al–Zr sputter deposited coatings and effect on optical appearance. Applied Surface Science, 2014, 317, 1113-1124.	6.1	19
36	Investigation of DC magnetron-sputtered TiO2 coatings: Effect of coating thickness, structure, and morphology on photocatalytic activity. Applied Surface Science, 2014, 313, 677-686.	6.1	32

#	Article	IF	CITATIONS
37	Characterization of oxide dispersion strengthened copper based materials developed by friction stir processing. Materials & Design, 2014, 60, 343-357.	5.1	82
38	Anodization and Optical Appearance of Sputter Deposited Al-Zr Coatings. , 2014, , 369-373.		0
39	Nanoscale surface potential imaging of the photocatalytic TiO2 films on aluminum. RSC Advances, 2013, 3, 23296.	3.6	10
40	Characterization of Joints Between Aluminum and Galvanized Steel Sheets. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science, 2013, 44, 2672-2682.	2.2	12
41	Preparation and corrosion behavior of Ni and Ni–graphene composite coatings. Materials Research Bulletin, 2013, 48, 1477-1483.	5.2	231
42	Characterization of Al/MWCNTs composites prepared by powder metallurgy routes. MATEC Web of Conferences, 2013, 7, 01002.	0.2	2
43	Effect of Aging at $700 \hat{A}^{\circ} \text{C}$ on Ferrite Transformation in a $316 \text{L}/308 \text{L}$ Weldment. Materials and Manufacturing Processes, $2012, 27, 1370\text{-}1375$.	4.7	1
44	Texture and formability studies on AA7020 Al alloy sheets. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 558, 439-445.	5.6	29
45	Dissimilar material joining using laser (aluminum to steel using zinc-based filler wire). Optics and Laser Technology, 2007, 39, 652-661.	4.6	206
46	Studies on Cadmium and Silver Trace Element Modified AZ91C Magnesium Alloy., 2006,, 65-72.		0
47	Characterisation of PLC band parameters using laser speckle technique. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2004, 364, 140-150.	5.6	94
48	Effect of specimen condition, orientation and alloy composition on PLC band parameters. Materials Science & Science & Properties, Microstructure and Processing, 2004, 382, 203-208.	5.6	28
49	Influence of precipitation on serrated flow in Al-5Zn-1Mg alloy. Materials Science and Technology, 2003, 19, 1344-1348.	1.6	2
50	Assessing Formability of Sheet Metals through Advanced Tensile and Laser Speckle Analysis. Materials Science Forum, 2002, 396-402, 1623-1628.	0.3	2
51	Effect of Mn on the Nanoprecipitation in Binary Fe-Cu alloys. Solid State Phenomena, 0, 172-174, 297-302.	0.3	6