Min Wu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7440464/publications.pdf

Version: 2024-02-01

185998 182168 2,658 53 28 51 citations h-index g-index papers 55 55 55 3902 citing authors all docs docs citations times ranked

#	Article	IF	CITATIONS
1	Fabrication of superhydrophobic and degradable cellulose paper materials for straw application. Cellulose, 2022, 29, 527-540.	2.4	7
2	Effect of morphology-induced interfacial defects on band location and enhanced photocatalytic dye degradation activity of TiO2/Graphene aerogel. Journal of Physics and Chemistry of Solids, 2022, 162, 110448.	1.9	6
3	Sustainable fabrication of hydrophobic lignocellulose micro and nanofibrils mulch films and spray coatings. Cellulose, 2022, 29, 2305-2322.	2.4	1
4	Spectra and crystallographic analysis of combined ultrasonic and mild acid hydrolysis structural effects on lignin-containing cellulose nanofibrils (LCNFs) and cellulose nanofibrils (CNFs). Journal of Wood Chemistry and Technology, 2022, 42, 125-135.	0.9	3
5	Cellulose nanofiber assisted dispersion of hydrophobic SiO2 nanoparticles in water and its superhydrophobic coating. Carbohydrate Polymers, 2022, 290, 119504.	5.1	26
6	Tailoring Interfacial Adhesion between PBAT Matrix and PTFE-Modified Microcrystalline Cellulose Additive for Advanced Composites. Polymers, 2022, 14, 1973.	2.0	5
7	Preparation of multifunctional cellulosic fabric based on graphene/TiO2 nanocoating. Cellulose, 2021, 28, 1153-1165.	2.4	7
8	Polypropylene/graphene nanoplatelets nanocomposites with high conductivity via solid-state shear mixing. E-Polymers, 2021, 21, 520-532.	1.3	11
9	Effect of Partial Dehydration on Freeze-Drying of Aqueous Nanocellulose Suspension. ACS Sustainable Chemistry and Engineering, 2020, 8, 11389-11395.	3.2	49
10	Chitin Nanofibril-Based Flame Retardant for Paper Application. ACS Sustainable Chemistry and Engineering, 2020, 8, 12360-12365.	3.2	25
11	Polarities-Induced Weakening of Molecular Interaction and Formation of Nanocellulose with Different Dimensions. ACS Sustainable Chemistry and Engineering, 2020, 8, 9277-9290.	3.2	12
12	Cellulose Nanofibril-Based Flame Retardant and Its Application to Paper. ACS Sustainable Chemistry and Engineering, 2020, 8, 10222-10229.	3.2	57
13	Two-Dimensional Nanocellulose-Enhanced High-Strength, Self-Adhesive, and Strain-Sensitive Poly(acrylic acid) Hydrogels Fabricated by a Radical-Induced Strategy for a Skin Sensor. ACS Sustainable Chemistry and Engineering, 2020, 8, 3427-3436.	3.2	51
14	Mild Alkaline Pretreatment for Isolation of Native-Like Lignin and Lignin-Containing Cellulose Nanofibers (LCNF) from Crop Waste. ACS Sustainable Chemistry and Engineering, 2019, 7, 14135-14142.	3.2	72
15	Carboxymethyl cellulose assisted mechanical preparation of cellulose nanocrystals with high yield. Cellulose, 2019, 26, 5227-5236.	2.4	11
16	Ultrasound-assisted mild sulphuric acid ball milling preparation of lignocellulose nanofibers (LCNFs) from sunflower stalks (SFS). Cellulose, 2019, 26, 4371-4389.	2.4	43
17	Cellulose nanosheets formed by mild additive-free ball milling. Cellulose, 2019, 26, 3143-3153.	2.4	13
18	Lignin-Containing Cellulose Nanomaterials: A Promising New Nanomaterial for Numerous Applications. Journal of Bioresources and Bioproducts, 2019, 4, 3-10.	11.8	142

#	Article	IF	Citations
19	Mechanochemistry of cellulose. Cellulose, 2019, 26, 215-225.	2.4	38
20	Waterâ€Resistant and Haze‶unable Transparent Cellulose Nanopaper for Patterned Electroluminescence Devices. Macromolecular Materials and Engineering, 2018, 303, 1800142.	1.7	2
21	Graphene-like porous carbon from sheet cellulose as electrodes for supercapacitors. Chemical Engineering Journal, 2018, 346, 104-112.	6.6	75
22	Green Preparation of Cellulose Nanocrystal and Its Application. ACS Sustainable Chemistry and Engineering, 2018, 6, 2954-2960.	3.2	104
23	Flexible double-cross-linked cellulose-based hydrogel and aerogel membrane for supercapacitor separator. Journal of Materials Chemistry A, 2018, 6, 24468-24478.	5.2	98
24	Graphene Oxide-Based Fe–Mg (Hydr)oxide Nanocomposite as Heavy Metals Adsorbent. Journal of Chemical & Chemi	1.0	30
25	Antistatic PVC-graphene Composite through Plasticizer-mediated Exfoliation of Graphite. Chinese Journal of Polymer Science (English Edition), 2018, 36, 1361-1367.	2.0	19
26	Thin Cellulose Nanofiber from Corncob Cellulose and Its Performance in Transparent Nanopaper. ACS Sustainable Chemistry and Engineering, 2017, 5, 2529-2534.	3.2	79
27	Wavelet analysis–artificial neural network conjunction models for multi-scale monthly groundwater level predicting in an arid inland river basin, northwestern China. Hydrology Research, 2017, 48, 1710-1729.	1.1	30
28	Improved Performance of Microbial Fuel Cell Using Esterified Corncob Cellulose Nanofibers To Fabricate Air-Cathode Gas Diffusion Layer. ACS Sustainable Chemistry and Engineering, 2017, 5, 9614-9618.	3.2	59
29	Oneâ€Pot Green Synthesis of Nitrogenâ€Doped Carbon Quantum Dots for Cell Nucleus Labeling and Copper(II) Detection. Chemistry - an Asian Journal, 2017, 12, 2916-2921.	1.7	31
30	Synergic Deoxy Reforming of Cellulose and Fatty Oil Using Molecularâ€Sieveâ€Supported Molybdenum Carbide and Tungsten Carbide towards Hydrocarbonâ€Rich Oil for Fuels. Energy Technology, 2017, 5, 2216-2225.	1.8	1
31	Face-to-Face Interfacial Assembly of Ultrathin g-C ₃ N ₄ and Anatase TiO ₂ Nanosheets for Enhanced Solar Photocatalytic Activity. ACS Applied Materials & Interfaces, 2017, 9, 28674-28684.	4.0	156
32	Synthesis of controllable monodisperse gold nanoparticles using wood material and their catalytic activity for p-nitrophenol reduction. Polymer Journal, 2016, 48, 919-923.	1.3	7
33	Highly Selective Conversion of Cellobiose and Cellulose to Hexitols by Ru-Based Homogeneous Catalyst under Acidic Conditions. Industrial & Engineering Chemistry Research, 2016, 55, 5263-5270.	1.8	12
34	Hydrophobic nanocoating of cellulose by solventless mechanical milling. Green Chemistry, 2016, 18, 3006-3012.	4.6	25
35	Cellulose nanosheets induced by mechanical impacts under hydrophobic environment. Cellulose, 2016, 23, 2809-2818.	2.4	22
36	Activated carbon from nitrogen rich watermelon rind for high-performance supercapacitors. RSC Advances, 2016, 6, 59333-59342.	1.7	79

#	Article	IF	CITATIONS
37	A versatile method for producing functionalized cellulose nanofibers and their application. Nanoscale, 2016, 8, 3753-3759.	2.8	98
38	An extrasynaptic GABA ergic signal modulates a pattern of forward movement in Caenorhabditis elegans. ELife, $2016, 5, .$	2.8	44
39	Influence of solvent polarity on surface-fluorination of cellulose nanofiber by ball milling. Cellulose, 2015, 22, 2341-2348.	2.4	25
40	Eco-friendly synthesis and antibacterial activity of silver nanoparticles reduced by nano-wood materials. Cellulose, 2014, 21, 2489-2496.	2.4	14
41	Exfoliation of graphite by dry ball milling with cellulose. Cellulose, 2014, 21, 2469-2478.	2.4	43
42	Aqueous pretreatment for reactive ball milling of cellulose. Cellulose, 2013, 20, 2175-2178.	2.4	20
43	Crystalline alignment of metal ions templated by \hat{l}^2 -chitin ester. Cellulose, 2013, 20, 2757-2763.	2.4	1
44	Oneâ€Step Dispersion of Cellulose Nanofibers by Mechanochemical Esterification in an Organic Solvent. ChemSusChem, 2012, 5, 2319-2322.	3.6	87
45	Platinum nanoparticles using wood nanomaterials: eco-friendly synthesis, shape control and catalytic activity for p-nitrophenol reduction. Green Chemistry, 2011, 13, 283-287.	4.6	166
46	Synthesis of magnetic wheat straw for arsenic adsorption. Journal of Hazardous Materials, 2011, 193, 10-16.	6.5	180
47	Electrospun membrane of cellulose acetate for heavy metal ion adsorption in water treatment. Carbohydrate Polymers, 2011, 83, 743-748.	5.1	251
48	Modified native cellulose fibersâ€"A novel efficient adsorbent for both fluoride and arsenic. Journal of Hazardous Materials, 2011, 185, 93-100.	6.5	140
49	A Novel Segmentation Algorithm for Fingerprint Image Based on Region Merging. , 2010, , .		2
50	Synthesis, selfâ€assembly, and thermosensitive properties of ethyl celluloseâ€ <i>g</i> amphiphilic copolymers. Journal of Polymer Science Part A, 2008, 46, 6907-6915.	2.5	78
51	Quasi-One-Dimensional Arrangement of Silver Nanoparticles Templated by Cellulose Microfibrils. Langmuir, 2008, 24, 10494-10497.	1.6	59
52	Cationization of cellulose fabrics by polyallylamine binding. Journal of Applied Polymer Science, 2006, 100, 1668-1672.	1.3	32
53	Absorption Behavior of a Modified Cellulose Hydrogel for both Fluoride and Arsenic. Advanced Materials Research, 0, 726-731, 733-738.	0.3	4