James E Galagan

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7440422/publications.pdf

Version: 2024-02-01

93 papers 43,043 citations

28190 55 h-index 89 g-index

95 all docs 95 docs citations 95 times ranked 44005 citing authors

#	Article	IF	CITATIONS
1	Paper-Based Progesterone Sensor Using an Allosteric Transcription Factor. ACS Omega, 2022, 7, 5804-5808.	1.6	3
2	An Allosteric Transcription Factor DNA-Binding Electrochemical Biosensor for Progesterone. ACS Sensors, 2022, 7, 1132-1137.	4.0	5
3	The quantum dot <i>vs.</i> organic dye conundrum for ratiometric FRET-based biosensors: which one would you chose?. Chemical Science, 2022, 13, 6715-6731.	3.7	5
4	RegulonDB 11.0: Comprehensive high-throughput datasets on transcriptional regulation in Escherichia coli K-12. Microbial Genomics, 2022, 8, .	1.0	32
5	Development and Clinical Validation of Iso-IMRS: A Novel Diagnostic Assay for <i>P. falciparum</i> Malaria. Analytical Chemistry, 2021, 93, 2097-2105.	3.2	7
6	Surface Immobilized Nucleic Acid–Transcription Factor Quantum Dots for Biosensing. Advanced Healthcare Materials, 2020, 9, e2000403.	3.9	10
7	Redefining fundamental concepts of transcription initiation in bacteria. Nature Reviews Genetics, 2020, 21, 699-714.	7.7	100
8	Transcription Factor Based Smallâ€Molecule Sensing with a Rapid Cell Phone Enabled Fluorescent Bead Assay. Angewandte Chemie - International Edition, 2020, 59, 21597-21602.	7.2	15
9	Hydrogel-Embedded Quantum Dot–Transcription Factor Sensors for Quantitative Progesterone Detection. ACS Applied Materials & Samp; Interfaces, 2020, 12, 43513-43521.	4.0	27
10	Transcription Factor Based Smallâ€Molecule Sensing with a Rapid Cell Phone Enabled Fluorescent Bead Assay. Angewandte Chemie, 2020, 132, 21781-21786.	1.6	2
11	Epigenetic competition reveals density-dependent regulation and target site plasticity of phosphorothioate epigenetics in bacteria. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117, 14322-14330.	3.3	25
12	A progesterone biosensor derived from microbial screening. Nature Communications, 2020, 11, 1276.	5.8	53
13	A Förster Resonance Energy Transferâ€Based Ratiometric Sensor with the Allosteric Transcription Factor TetR. Small, 2020, 16, e1907522.	5.2	16
14	An Enzymatic Electrochemical Biosensor for Real-Time Detection of Physiologically Relevant Nicotine Concentrations. ECS Meeting Abstracts, 2020, MA2020-02, 3374-3374.	0.0	0
15	(Invited) Mining Microbes to Engineer Novel Biosensor Devices. ECS Meeting Abstracts, 2020, MA2020-02, 2839-2839.	0.0	0
16	An Allosteric Transcription Factor-Based Electrochemical Progesterone Sensor. ECS Meeting Abstracts, 2020, MA2020-02, 3318-3318.	0.0	0
17	RegulonDB v 10.5: tackling challenges to unify classic and high throughput knowledge of gene regulation in <i>E. coli</i> K-12. Nucleic Acids Research, 2019, 47, D212-D220.	6.5	322
18	Reply to Lee and Howden. Clinical Infectious Diseases, 2018, 66, 160-161.	2.9	1

#	Article	IF	CITATIONS
19	A unified resource for transcriptional regulation in Escherichia coli K-12 incorporating high-throughput-generated binding data into RegulonDB version 10.0. BMC Biology, 2018, 16, 91.	1.7	42
20	Genomic analysis of globally diverse Mycobacterium tuberculosis strains provides insights into the emergence and spread of multidrug resistance. Nature Genetics, 2017, 49, 395-402.	9.4	258
21	Mycobacterium tuberculosis Whole Genome Sequences From Southern India Suggest Novel Resistance Mechanisms and the Need for Region-Specific Diagnostics. Clinical Infectious Diseases, 2017, 64, 1494-1501.	2.9	76
22	The Neurospora Transcription Factor ADV-1 Transduces Light Signals and Temporal Information to Control Rhythmic Expression of Genes Involved in Cell Fusion. G3: Genes, Genomes, Genetics, 2017, 7, 129-142.	0.8	47
23	Coordinated regulation of acid resistance in Escherichia coli. BMC Systems Biology, 2017, 11, 1.	3.0	142
24	Simulating Serial-Target Antibacterial Drug Synergies Using Flux Balance Analysis. PLoS ONE, 2016, 11, e0147651.	1.1	14
25	Genetic Determinants of Drug Resistance in <i>Mycobacterium tuberculosis</i> and Their Diagnostic Value. American Journal of Respiratory and Critical Care Medicine, 2016, 194, 621-630.	2.5	131
26	Characterization of a cAMP responsive transcription factor, Cmr (Rv1675c), in TB complex mycobacteria reveals overlap with the DosR (DevR) dormancy regulon. Nucleic Acids Research, 2016, 44, 134-151.	6.5	25
27	Comprehensive Definition of the SigH Regulon of Mycobacterium tuberculosis Reveals Transcriptional Control of Diverse Stress Responses. PLoS ONE, 2016, 11, e0152145.	1.1	40
28	Metabolic modeling predicts metabolite changes in Mycobacterium tuberculosis. BMC Systems Biology, 2015, 9, 57.	3.0	25
29	The DNA-binding network of Mycobacterium tuberculosi s. Nature Communications, 2015, 6, 5829.	5.8	192
30	Role of intragenic binding of cAMP responsive protein (CRP) in regulation of the succinate dehydrogenase genes Rv0249c-Rv0247c in TB complex mycobacteria. Nucleic Acids Research, 2015, 43, 5377-5393.	6.5	29
31	Genome-Wide Characterization of Light-Regulated Genes in <i>Neurospora crassa</i> . G3: Genes, Genomes, Genetics, 2014, 4, 1731-1745.	0.8	82
32	Genomic insights into tuberculosis. Nature Reviews Genetics, 2014, 15, 307-320.	7.7	227
33	Analysis of clock-regulated genes in <i>Neurospora</i> reveals widespread posttranscriptional control of metabolic potential. Proceedings of the National Academy of Sciences of the United States of America, 2014, 111, 16995-17002.	3.3	131
34	Decoding ChIP-seq with a double-binding signal refines binding peaks to single-nucleotides and predicts cooperative interaction. Genome Research, 2014, 24, 1686-1697.	2.4	21
35	Transcription Factor Binding Site Mapping Using ChIP-Seq. Microbiology Spectrum, 2014, 2, .	1.2	22
36	Genomic analysis identifies targets of convergent positive selection in drug-resistant Mycobacterium tuberculosis. Nature Genetics, 2013, 45, 1183-1189.	9.4	393

#	Article	IF	CITATIONS
37	The Mycobacterium tuberculosis regulatory network and hypoxia. Nature, 2013, 499, 178-183.	13.7	416
38	The Role of Selection in Shaping Diversity of Natural M. tuberculosis Populations. PLoS Pathogens, 2013, 9, e1003543.	2.1	138
39	Reconstruction and Validation of a Genome-Scale Metabolic Model for the Filamentous Fungus Neurospora crassa Using FARM. PLoS Computational Biology, 2013, 9, e1003126.	1.5	70
40	Resource Competition May Lead to Effective Treatment of Antibiotic Resistant Infections. PLoS ONE, 2013, 8, e80775.	1.1	18
41	GenomeView: a next-generation genome browser. Nucleic Acids Research, 2012, 40, e12-e12.	6.5	126
42	Comparative analysis of mycobacterium and related actinomycetes yields insight into the evolution of mycobacterium tuberculosis pathogenesis. BMC Genomics, 2012, 13, 120.	1.2	80
43	How accurate can genetic predictions be?. BMC Genomics, 2012, 13, 340.	1.2	16
44	ChIP-Seq and the Complexity of Bacterial Transcriptional Regulation. Current Topics in Microbiology and Immunology, 2012, 363, 43-68.	0.7	47
45	Independent Large Scale Duplications in Multiple M. tuberculosis Lineages Overlapping the Same Genomic Region. PLoS ONE, 2012, 7, e26038.	1.1	30
46	Whole-genome sequencing of rifampicin-resistant Mycobacterium tuberculosis strains identifies compensatory mutations in RNA polymerase genes. Nature Genetics, 2012, 44, 106-110.	9.4	475
47	Inferring Carbon Sources from Gene Expression Profiles Using Metabolic Flux Models. PLoS ONE, 2012, 7, e36947.	1.1	27
48	Use of whole genome sequencing to estimate the mutation rate of Mycobacterium tuberculosis during latent infection. Nature Genetics, 2011, 43, 482-486.	9.4	403
49	A Systems Biology Approach to Infectious Disease Research: Innovating the Pathogen-Host Research Paradigm. MBio, 2011, 2, e00325-10.	1.8	111
50	Genome Variation in Cryptococcus gattii, an Emerging Pathogen of Immunocompetent Hosts. MBio, 2011, 2, e00342-10.	1.8	182
51	Comparative Genomics Yields Insights into Niche Adaptation of Plant Vascular Wilt Pathogens. PLoS Pathogens, 2011, 7, e1002137.	2.1	477
52	TB database 2010: Overview and update. Tuberculosis, 2010, 90, 225-235.	0.8	106
53	Comparative genomics reveals mobile pathogenicity chromosomes in Fusarium. Nature, 2010, 464, 367-373.	13.7	1,442
54	Human T cell epitopes of Mycobacterium tuberculosis are evolutionarily hyperconserved. Nature Genetics, 2010, 42, 498-503.	9.4	642

#	Article	IF	CITATIONS
55	Largeâ€scale identification of genetic design strategies using local search. Molecular Systems Biology, 2009, 5, 296.	3.2	143
56	A High-Density Single Nucleotide Polymorphism Map for <i>Neurospora crassa</i> . Genetics, 2009, 181, 767-781.	1.2	54
57	Interpreting Expression Data with Metabolic Flux Models: Predicting Mycobacterium tuberculosis Mycolic Acid Production. PLoS Computational Biology, 2009, 5, e1000489.	1.5	371
58	Comparative Genomic Characterization of Francisella tularensis Strains Belonging to Low and High Virulence Subspecies. PLoS Pathogens, 2009, 5, e1000459.	2.1	112
59	Pneumococcal Capsular Polysaccharide Structure Predicts Serotype Prevalence. PLoS Pathogens, 2009, 5, e1000476.	2.1	264
60	Genomic Analysis of the Basal Lineage Fungus Rhizopus oryzae Reveals a Whole-Genome Duplication. PLoS Genetics, 2009, 5, e1000549.	1.5	332
61	TB database: an integrated platform for tuberculosis research. Nucleic Acids Research, 2009, 37, D499-D508.	6.5	201
62	Evolutionary Roles of Upstream Open Reading Frames in Mediating Gene Regulation in Fungi. Annual Review of Microbiology, 2009, 63, 385-409.	2.9	105
63	A blind deconvolution approach to high-resolution mapping of transcription factor binding sites from ChIP-seq data. Genome Biology, 2009, 10, R142.	13.9	61
64	Naturally occurring dominant resistance mutations to hepatitis C virus protease and polymerase inhibitors in treatment-na \tilde{A} -ve patients. Hepatology, 2008, 48, 1769-1778.	3.6	326
65	Short-term genome evolution of Listeria monocytogenes in a non-controlled environment. BMC Genomics, 2008, 9, 539.	1.2	170
66	Cross-kingdom patterns of alternative splicing and splice recognition. Genome Biology, 2008, 9, R50.	13.9	126
67	Mechanisms of intron gain and loss in Cryptococcus. Genome Biology, 2008, 9, R24.	13.9	75
68	Dynamics of <i>Pseudomonas aeruginosa</i> genome evolution. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 3100-3105.	3.3	492
69	Conserved Secondary Structures in Aspergillus. PLoS ONE, 2008, 3, e2812.	1.1	4
70	Enabling a Community to Dissect an Organism: Overview of the Neurospora Functional Genomics Project. Advances in Genetics, 2007, 57, 49-96.	0.8	191
71	Dual Modes of Natural Selection on Upstream Open Reading Frames. Molecular Biology and Evolution, 2007, 24, 1744-1751.	3.5	46
72	Conrad: Gene prediction using conditional random fields. Genome Research, 2007, 17, 1389-1398.	2.4	62

#	Article	IF	CITATIONS
73	Dothideomycete–Plant Interactions Illuminated by Genome Sequencing and EST Analysis of the Wheat Pathogen <i>Stagonospora nodorum</i> . Plant Cell, 2007, 19, 3347-3368.	3.1	235
74	Genome Sequence of Aedes aegypti, a Major Arbovirus Vector. Science, 2007, 316, 1718-1723.	6.0	1,025
75	A genome-wide map of diversity in Plasmodium falciparum. Nature Genetics, 2007, 39, 113-119.	9.4	320
76	Positive selection for unpreferred codon usage in eukaryotic genomes. BMC Evolutionary Biology, 2007, 7, 119.	3.2	22
77	Insights from the genome of the biotrophic fungal plant pathogen Ustilago maydis. Nature, 2006, 444, 97-101.	13.7	1,113
78	Combo: a whole genome comparative browser. Bioinformatics, 2006, 22, 1782-1783.	1.8	46
79	The genome sequence of the rice blast fungus Magnaporthe grisea. Nature, 2005, 434, 980-986.	13.7	1,447
80	Genome sequencing and analysis of Aspergillus oryzae. Nature, 2005, 438, 1157-1161.	13.7	1,128
81	Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature, 2005, 438, 1151-1156.	13.7	1,272
82	Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature, 2005, 438, 1105-1115.	13.7	1,250
83	Assembly of polymorphic genomes: Algorithms and application to Ciona savignyi. Genome Research, 2005, 15, 1127-1135.	2.4	170
84	Genomics of the fungal kingdom: Insights into eukaryotic biology. Genome Research, 2005, 15, 1620-1631.	2.4	269
85	Improving genome annotations using phylogenetic profile anomaly detection. Bioinformatics, 2005, 21, 464-470.	1.8	22
86	Patterns of Intron Gain and Loss in Fungi. PLoS Biology, 2004, 2, e422.	2.6	117
87	RIP: the evolutionary cost of genome defense. Trends in Genetics, 2004, 20, 417-423.	2.9	392
88	Lessons from the Genome Sequence of Neurospora crassa: Tracing the Path from Genomic Blueprint to Multicellular Organism. Microbiology and Molecular Biology Reviews, 2004, 68, 1-108.	2.9	572
89	The genome sequence of the filamentous fungus Neurospora crassa. Nature, 2003, 422, 859-868.	13.7	1,528
90	The Genome of M. acetivorans Reveals Extensive Metabolic and Physiological Diversity. Genome Research, 2002, 12, 532-542.	2.4	573

#	Article	IF	CITATIONS
91	Initial sequencing and analysis of the human genome. Nature, 2001, 409, 860-921.	13.7	21,074
92	Genomic insights into tuberculosis. , 0, .		1
93	Transcription Factor Binding Site Mapping Using ChIP-Seq. , 0, , 161-181.		O