Angeles Canales

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7440411/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Conformational and Structural characterization of carbohydrates and their interactions studied by NMR. Current Medicinal Chemistry, 2021, 28, .	2.4	2
2	Competitive upconversion-linked immunoassay using peptide mimetics for the detection of the mycotoxin zearalenone. Biosensors and Bioelectronics, 2020, 170, 112683.	10.1	36
3	Structural Basis of Noscapine Activation for Tubulin Binding. Journal of Medicinal Chemistry, 2020, 63, 8495-8501.	6.4	30
4	Efficient Chemoenzymatic Synthesis of Nâ€Glycans with a β1,4â€Galactosylated Bisecting GlcNAc Motif. ChemBioChem, 2020, 21, 3212-3215.	2.6	12
5	Self-Adaptation of Pseudomonas fluorescens Biofilms to Hydrodynamic Stress. Frontiers in Microbiology, 2020, 11, 588884.	3.5	17
6	Glycosylated Cellâ€Penetrating Peptides (GCPPs). ChemBioChem, 2019, 20, 1400-1409.	2.6	19
7	Insights into real-time chemical processes in a calcium sensor protein-directed dynamic library. Nature Communications, 2019, 10, 2798.	12.8	16
8	Molecular dynamics study of nanoconfined TIP4P/2005 water: how confinement and temperature affect diffusion and viscosity. Physical Chemistry Chemical Physics, 2019, 21, 13653-13667.	2.8	59
9	Synthesis, Profiling, and Bioactive Conformation of trans yclopropyl Epothilones. Helvetica Chimica Acta, 2019, 102, e1900078.	1.6	3
10	Chameleon-like behavior of indolylpiperidines in complex with cholinesterases targets: Potent butyrylcholinesterase inhibitors. European Journal of Medicinal Chemistry, 2018, 145, 431-444.	5.5	18
11	Avenues to Characterize the Interactions of Extended Nâ€Glycans with Proteins by NMR Spectroscopy: The Influenza Hemagglutinin Case. Angewandte Chemie, 2018, 130, 15271-15275.	2.0	10
12	Avenues to Characterize the Interactions of Extended Nâ€Glycans with Proteins by NMR Spectroscopy: The Influenza Hemagglutinin Case. Angewandte Chemie - International Edition, 2018, 57, 15051-15055.	13.8	23
13	Breaking the limits in analyzing carbohydrate recognition by NMR: Resolving Branch―Selective Interaction of a Tetraantennary Nâ€Glycan with lectins. FASEB Journal, 2018, 32, 544.15.	0.5	0
14	Triazolopyrimidines Are Microtubule-Stabilizing Agents that Bind the Vinca Inhibitor Site of Tubulin. Cell Chemical Biology, 2017, 24, 737-750.e6.	5.2	58
15	Breaking the Limits in Analyzing Carbohydrate Recognition by NMR Spectroscopy: Resolving Branch‧elective Interaction of a Tetraâ€Antennary <i>N</i> â€Glycan with Lectins. Angewandte Chemie - International Edition, 2017, 56, 14987-14991.	13.8	47
16	Breaking the Limits in Analyzing Carbohydrate Recognition by NMR Spectroscopy: Resolving Branch elective Interaction of a Tetraâ€Antennary <i>N</i> â€Glycan with Lectins. Angewandte Chemie, 2017, 129, 15183-15187.	2.0	8
17	Development of a Nucleotide Exchange Inhibitor That Impairs Ras Oncogenic Signaling. Chemistry - A European Journal, 2017, 23, 1676-1685.	3.3	13
18	Interactions between a Heparin Trisaccharide Library and FGF-1 Analyzed by NMR Methods. International Journal of Molecular Sciences, 2017, 18, 1293.	4.1	13

#	Article	IF	CITATIONS
19	Hidden α-helical propensity segments within disordered regions of the transcriptional activator CHOP. PLoS ONE, 2017, 12, e0189171.	2.5	6
20	Synthesis, Biological Profiling and Determination of the Tubulin-Bound Conformation of 12-Aza-Epothilones (Azathilones). Molecules, 2016, 21, 1010.	3.8	6
21	Insights into the C-terminal Peptide Binding Specificity of the PDZ Domain of Neuronal Nitric-oxide Synthase. Journal of Biological Chemistry, 2016, 291, 11581-11595.	3.4	25
22	Structural and Biochemical Characterization of the Interaction of Tubulin with Potent Natural Analogues of Podophyllotoxin. Journal of Natural Products, 2016, 79, 2113-2121.	3.0	26
23	Diastereomeric Glycosyl Sulfoxides Display Different Recognition Features versus <i>E. coli</i> βâ€Galactosidase. European Journal of Organic Chemistry, 2016, 2016, 5117-5122.	2.4	9
24	Unraveling the Conformational Landscape of Ligand Binding to Glucose/Galactose-Binding Protein by Paramagnetic NMR and MD Simulations. ACS Chemical Biology, 2016, 11, 2149-2157.	3.4	25
25	Thiodisaccharide Sulfoxides: Absolute Configuration of the SO Sulfur Atom and Influence on the Biological Activity towards the βâ€Galactosidase from <i>E. coli</i> . European Journal of Organic Chemistry, 2015, 2015, 1448-1455.	2.4	8
26	Dextrans produced by lactic acid bacteria exhibit antiviral and immunomodulatory activity against salmonid viruses. Carbohydrate Polymers, 2015, 124, 292-301.	10.2	94
27	Novel pH-Stable Glycoside Hydrolase Family 3 β-Xylosidase from Talaromyces amestolkiae: an Enzyme Displaying Regioselective Transxylosylation. Applied and Environmental Microbiology, 2015, 81, 6380-6392.	3.1	39
28	New Inhibitors of Angiogenesis with Antitumor Activity in Vivo. Journal of Medicinal Chemistry, 2015, 58, 3757-3766.	6.4	18
29	Advanced NMR Techniques: Defining Carbohydrate Structures and Ligand–Receptor Interactions. , 2015, , 121-146.		0
30	Solution Conformation of Carbohydrates: A View by Using NMR Assisted by Modeling. Methods in Molecular Biology, 2015, 1273, 261-287.	0.9	7
31	Importance of the polarity of the glycosaminoglycan chain on the interaction with FGF-1. Glycobiology, 2014, 24, 1004-1009.	2.5	24
32	Taxanes with high potency inducing tubulin assembly overcome tumoural cell resistances. Bioorganic and Medicinal Chemistry, 2014, 22, 5078-5090.	3.0	35
33	Lanthanide-Chelating Carbohydrate Conjugates Are Useful Tools To Characterize Carbohydrate Conformation in Solution and Sensitive Sensors to Detect Carbohydrate–Protein Interactions. Journal of the American Chemical Society, 2014, 136, 8011-8017.	13.7	51
34	Molecular Recognition of Epothilones by Microtubules and Tubulin Dimers Revealed by Biochemical and NMR Approaches. ACS Chemical Biology, 2014, 9, 1033-1043.	3.4	30
35	A Reversible and Selective Inhibitor of Monoacylglycerol Lipase Ameliorates Multiple Sclerosis. Angewandte Chemie - International Edition, 2014, 53, 13765-13770.	13.8	91
36	Exploring NMR methods as a tool to select suitable fluorescent nucleotide analogues. Organic and Biomolecular Chemistry, 2013, 11, 5332.	2.8	6

#	Article	IF	CITATIONS
37	Heparin Modulates the Mitogenic Activity of Fibroblast Growth Factor by Inducing Dimerization of its Receptor. A 3D View by Using NMR. ChemBioChem, 2013, 14, 1732-1744.	2.6	40
38	A structure-based design of new C2- and C13-substituted taxanes: tubulin binding affinities and extended quantitative structure–activity relationships using comparative binding energy (COMBINE) analysis. Organic and Biomolecular Chemistry, 2013, 11, 3046.	2.8	22
39	New Interfacial Microtubule Inhibitors of Marine Origin, PM050489/PM060184, with Potent Antitumor Activity and a Distinct Mechanism. ACS Chemical Biology, 2013, 8, 2084-2094.	3.4	57
40	Insights into the Glycosaminoglycan-Mediated Cytotoxic Mechanism of Eosinophil Cationic Protein Revealed by NMR. ACS Chemical Biology, 2013, 8, 144-151.	3.4	27
41	Breaking Pseudo‣ymmetry in Multiantennary Complex Nâ€Clycans Using Lanthanideâ€Binding Tags and NMR Pseudoâ€Contact Shifts. Angewandte Chemie - International Edition, 2013, 52, 13789-13793.	13.8	71
42	Unraveling the Interaction between the LPS Oâ€Antigen of <i>Burkholderia anthina</i> and the 5D8 Monoclonal Antibody by Using a Multidisciplinary Chemical Approach, with Synthesis, NMR, and Molecular Modeling Methods. ChemBioChem, 2013, 14, 1485-1493.	2.6	8
43	Recent advances on the application of NMR methods to study the conformation and recognition properties of carbohydrates. Carbohydrate Chemistry, 2012, , 192-214.	0.3	4
44	Tubulin Binding, Protein-Bound Conformation in Solution, and Antimitotic Cellular Profiling of Noscapine and Its Derivatives. Journal of Medicinal Chemistry, 2012, 55, 1920-1925.	6.4	25
45	Review: use of residual dipolar couplings to determine the structure of carbohydrates. Magnetic Resonance in Chemistry, 2012, 50, S80-5.	1.9	24
46	Zampanolide, a Potent New Microtubule-Stabilizing Agent, Covalently Reacts with the Taxane Luminal Site in Tubulin α,β-Heterodimers and Microtubules. Chemistry and Biology, 2012, 19, 686-698.	6.0	81
47	Structure–Activity Relationship of a New Series of Reversible Dual Monoacylglycerol Lipase/Fatty Acid Amide Hydrolase Inhibitors. Journal of Medicinal Chemistry, 2012, 55, 824-836.	6.4	30
48	Synthesis and characterization of a paramagnetic sialic acid conjugate as probe for magnetic resonance applications. Carbohydrate Research, 2012, 354, 21-31.	2.3	6
49	Modulation of Microtubule Interprotofilament Interactions by Modified Taxanes. Biophysical Journal, 2011, 101, 2970-2980.	0.5	28
50	Unravelling the gallic acid degradation pathway in bacteria: the <i>gal</i> cluster from <i>Pseudomonas putida</i> . Molecular Microbiology, 2011, 79, 359-374.	2.5	72
51	Insights into the Interaction of Discodermolide and Docetaxel with Tubulin. Mapping the Binding Sites of Microtubule-Stabilizing Agents by Using an Integrated NMR and Computational Approach. ACS Chemical Biology, 2011, 6, 789-799.	3.4	46
52	A rigid lanthanide binding tag for NMR structural analysis of carbohydrates. Chemical Communications, 2011, 47, 7179.	4.1	36
53	Conformational Selection of the AGA*IA _M Heparin Pentasaccharide when Bound to the Fibroblast Growth Factor Receptor. Chemistry - A European Journal, 2011, 17, 11204-11209.	3.3	32
54	Characterization of SMG-9, an essential component of the nonsense-mediated mRNA decay SMG1C complex. Nucleic Acids Research, 2011, 39, 347-358.	14.5	384

#	Article	IF	CITATIONS
55	Molecular Recognition of Peloruside A by Microtubules. The C24 Primary Alcohol is Essential for Biological Activity. ChemBioChem, 2010, 11, 1669-1678.	2.6	22
56	Antimicrobial Peptides and Their Superior Fluorinated Analogues: Structure–Activity Relationships as Revealed by NMR Spectroscopy and MD Calculations. ChemBioChem, 2010, 11, 2424-2432.	2.6	7
57	Gentisic Acid, a Compound Associated with Plant Defense and a Metabolite of Aspirin, Heads a New Class of in Vivo Fibroblast Growth Factor Inhibitors. Journal of Biological Chemistry, 2010, 285, 11714-11729.	3.4	87
58	Short-Term Monotherapy in HIV-Infected Patients with a Virus Entry Inhibitor Against the gp41 Fusion Peptide. Science Translational Medicine, 2010, 2, 63re3.	12.4	70
59	Cell wall polysaccharides isolated from the fungus Neotestudina rosatii, one of the etiologic agents of mycetoma in man. Glycoconjugate Journal, 2009, 26, 1047-1054.	2.7	5
60	The Bound Conformation of Microtubule‣tabilizing Agents: NMR Insights into the Bioactive 3D Structure of Discodermolide and Dictyostatin. Chemistry - A European Journal, 2008, 14, 7557-7569.	3.3	62
61	Deciphering the genetic determinants for aerobic nicotinic acid degradation: The <i>nic</i> cluster from <i>Pseudomonas putida</i> KT2440. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 11329-11334.	7.1	136
62	Reply to Behrman: "N-Formylmaleamic acid: An intermediate in nicotinic acid metabolism". Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, E89-E89.	7.1	1
63	NMR studies on the conformation of oligomannosides and their interaction with banana lectin. Glycoconjugate Journal, 2007, 24, 449-464.	2.7	15
64	A Simple Model System for the Study of Carbohydrateâ^'Aromatic Interactions. Journal of the American Chemical Society, 2007, 129, 2890-2900.	13.7	98
65	NMR Investigations of Lectin—Carbohydrate Interactions. , 2007, , 51-73.		1
66	C-Disaccharides as Probes for Carbohydrate Recognition – Investigation of the Conformational Requirements for Binding of Disaccharide Mimetics of Sialyl Lewis X. European Journal of Organic Chemistry, 2007, 2007, 645-654.	2.4	19
67	NMR Investigation of the Bound Conformation of Natural and Synthetic Oligomannosides to Banana Lectin. European Journal of Organic Chemistry, 2007, 2007, 1577-1585.	2.4	3
68	Temperature dependence of ligand–protein complex formation as reflected by saturation transfer difference NMR experiments. Magnetic Resonance in Chemistry, 2007, 45, 745-748.	1.9	27
69	Synthesis and NMR experiments of (4,5,6-13C)-deoxymannojirimycin. A new entry to 13C-labeled glycosidase inhibitors. Carbohydrate Research, 2007, 342, 1805-1812.	2.3	8
70	Isolation and structural determination of a unique polysaccharide containing mannofuranose from the cell wall of the fungus Acrospermum compressum. Glycoconjugate Journal, 2007, 24, 421-428.	2.7	12
71	NMR Determination of the Bioactive Conformation of Peloruside A Bound To Microtubules. Journal of the American Chemical Society, 2006, 128, 8757-8765.	13.7	62
72	Conformational insights on the molecular recognition processes of carbohydrate molecules by proteins and enzymes: A 3D view by using NMR. Biocatalysis and Biotransformation, 2006, 24, 13-22.	2.0	9

#	Article	IF	CITATIONS
73	Protein-Carbohydrate Interactions: A Combined Theoretical and NMR Experimental Approach on Carbohydrate-Aromatic Interactions and on Pyranose Ring Distortion. ACS Symposium Series, 2006, , 60-80.	0.5	7
74	Solution NMR structure of a human FGF-1 monomer, activated by a hexasaccharide heparin-analogue. FEBS Journal, 2006, 273, 4716-4727.	4.7	57
75	Supramolecular pseudo-rotaxane type complexes from π-extended TTF dimer crown ether and C60. Tetrahedron, 2006, 62, 1998-2002.	1.9	39
76	Backbone dynamics of a biologically active human FGF-1 monomer, complexed to a hexasaccharide heparin-analogue, by 15N NMR relaxation methods. Journal of Biomolecular NMR, 2006, 35, 225-239.	2.8	20
77	Enhanced signal dispersion in saturation transfer difference experiments by conversion to a 1D-STD-homodecoupled spectrum. Journal of Biomolecular NMR, 2006, 36, 103-109.	2.8	4
78	Determination of the Bound Conformation of a Competitive Nanomolar Inhibitor ofMycobacterium tuberculosis Type II Dehydroquinase by NMR Spectroscopy. ChemMedChem, 2006, 1, 990-996.	3.2	12
79	Hevein Domains: An Attractive Model to Study Carbohydrate–Protein Interactions at Atomic Resolution. Advances in Carbohydrate Chemistry and Biochemistry, 2006, 60, 303-354.	0.9	55
80	Molecular Characterization of the Gallate Dioxygenase from Pseudomonas putida KT2440. Journal of Biological Chemistry, 2005, 280, 35382-35390.	3.4	53
81	Conformational Flexibility of a Synthetic Glycosylaminoglycan Bound to a Fibroblast Growth Factor. FGF-1 Recognizes Both the 1C4 and 2SO Conformations of a Bioactive Heparin-like Hexasaccharide. Journal of the American Chemical Society, 2005, 127, 5778-5779.	13.7	69
82	Limited Flexibility of Lactose Detected from Residual Dipolar Couplings Using Molecular Dynamics Simulations and Steric Alignment Methods. Journal of the American Chemical Society, 2005, 127, 3589-3595.	13.7	53
83	NMR experiments for the measurement of proton-proton and carbon-carbon residual dipolar couplings in uniformly labelled oligosaccharides. Journal of Biomolecular NMR, 2003, 26, 345-353.	2.8	23
84	NMR investigations of protein–carbohydrate interactions: insights into the topology of the bound conformation of a lactose isomer and β-galactosyl xyloses to mistletoe lectin and galectin-1. Biochimica Et Biophysica Acta - General Subjects, 2001, 1568, 225-236.	2.4	31
85	CHAPTER 5. Lanthanide-Chelating Carbohydrate Conjugates to Detect Carbohydrate–Protein Interactions. New Developments in NMR, 0, , 150-160.	0.1	1