Bin Zhang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7440348/publications.pdf

Version: 2024-02-01

9103 9264 144 22,835 218 74 citations h-index g-index papers 237 237 237 18420 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Atomically Dispersed Ru-Decorated TiO ₂ Nanosheets for Thermally Assisted Solar-Driven Nitrogen Oxidation into Nitric Oxide. CCS Chemistry, 2022, 4, 1208-1216.	7.8	17
2	In situ structural reconstruction of NiMo alloy as a versatile organic oxidation electrode for boosting hydrogen production. Rare Metals, 2022, 41, 836-843.	7.1	15
3	Electrochemical Synthesis of Nitric Acid from Nitrogen Oxidation. Angewandte Chemie - International Edition, 2022, 61, .	13.8	47
4	Electrochemical Synthesis of Nitric Acid from Nitrogen Oxidation. Angewandte Chemie, 2022, 134, .	2.0	6
5	Recent advances in electrocatalytic nitrite reduction. Chemical Communications, 2022, 58, 2777-2787.	4.1	83
6	Single-atom catalysts for thermal- and electro-catalytic hydrogenation reactions. Journal of Materials Chemistry A, 2022, 10, 5743-5757.	10.3	22
7	Dissolution of the Heteroatom Dopants and Formation of Ortho-Quinone Moieties in the Doped Carbon Materials during Water Electrooxidation. Journal of the American Chemical Society, 2022, 144, 3250-3258.	13.7	45
8	Electrocatalytic construction of the C-N bond from the derivates of CO2 and N2. Science China Chemistry, 2022, 65, 204-206.	8.2	54
9	Cu clusters/TiO _{2â^'<i>x</i>} with abundant oxygen vacancies for enhanced electrocatalytic nitrate reduction to ammonia. Journal of Materials Chemistry A, 2022, 10, 6448-6453.	10.3	91
10	Field-induced reagent concentration and sulfur adsorption enable efficient electrocatalytic semihydrogenation of alkynes. Science Advances, 2022, 8, eabm9477.	10.3	40
11	Electrocatalytic Reduction of Low-Concentration Nitric Oxide into Ammonia over Ru Nanosheets. ACS Energy Letters, 2022, 7, 1187-1194.	17.4	68
12	Zn-Doped CoS ₂ Nanoarrays for an Efficient Oxygen Evolution Reaction: Understanding the Doping Effect for a Precatalyst. ACS Applied Materials & Samp; Interfaces, 2022, 14, 14235-14242.	8.0	35
13	Structurally Disordered RuO ₂ Nanosheets with Rich Oxygen Vacancies for Enhanced Nitrate Electroreduction to Ammonia. Angewandte Chemie, 2022, 134, .	2.0	25
14	Structurally Disordered RuO ₂ Nanosheets with Rich Oxygen Vacancies for Enhanced Nitrate Electroreduction to Ammonia. Angewandte Chemie - International Edition, 2022, 61, .	13.8	135
15	CuOx clusters decorated TiO2 for photocatalytic oxidation of nitrogen in air into nitric oxide under ambient conditions. Journal of Catalysis, 2022, 409, 70-77.	6.2	9
16	Direct Electrosynthesis of Urea from Carbon Dioxide and Nitric Oxide. ACS Energy Letters, 2022, 7, 284-291.	17.4	105
17	Phenanthrenequinone-like moiety functionalized carbon for electrocatalytic acidic oxygen evolution. CheM, 2022, 8, 1415-1426.	11.7	29
18	Chloride-Derived Bimetallic Cu-Fe Nanoparticles for High-Selective Nitrate-to-Ammonia Electrochemical Catalysis. Processes, 2022, 10, 751.	2.8	11

#	Article	IF	CITATIONS
19	Sulfateâ€Enabled Nitrate Synthesis from Nitrogen Electrooxidation on a Rhodium Electrocatalyst. Angewandte Chemie, 2022, 134, .	2.0	9
20	Sulfateâ€Enabled Nitrate Synthesis from Nitrogen Electrooxidation on a Rhodium Electrocatalyst. Angewandte Chemie - International Edition, 2022, 61, .	13.8	30
21	Dynamic active sites in NiFe oxyhydroxide upon Au nanoparticles decoration for highly efficient electrochemical water oxidation. Nano Energy, 2022, 98, 107328.	16.0	20
22	Electrocatalytic Reduction of CO ₂ to Ethanol at Close to Theoretical Potential via Engineering Abundant Electronâ€Donating Cu ^{<i>Î</i>+} Species. Angewandte Chemie, 2022, 134,	2.0	12
23	Mechanistic insight into the controlled synthesis of metal phosphide catalysts from annealing of metal oxides with sodium hypophosphite. Nano Research, 2022, 15, 10134-10141.	10.4	15
24	Oxide-Derived Core–Shell Cu@Zn Nanowires for Urea Electrosynthesis from Carbon Dioxide and Nitrate in Water. ACS Nano, 2022, 16, 9095-9104.	14.6	86
25	Electrocatalytic Reduction of CO ₂ to Ethanol at Close to Theoretical Potential via Engineering Abundant Electronâ€Donating Cu ^{<i>δ</i>+} Species. Angewandte Chemie - International Edition, 2022, 61, .	13.8	64
26	Recent Advances in Plasmonic Nanostructures for Enhanced Photocatalysis and Electrocatalysis. Advanced Materials, 2021, 33, e2000086.	21.0	232
27	Unveiling enzyme-mimetic active intermediate of a bioinspired oxo-MoS electrocatalyst for aqueous nitrate reduction. Journal of Energy Chemistry, 2021, 53, 90-92.	12.9	12
28	Recent advances in non-noble metal electrocatalysts for nitrate reduction. Chemical Engineering Journal, 2021, 403, 126269.	12.7	375
29	Thermally-assisted photocatalytic CO2 reduction to fuels. Chemical Engineering Journal, 2021, 408, 127280.	12.7	90
30	Unveiling the Activity Origin of Iron Nitride as Catalytic Material for Efficient Hydrogenation of CO ₂ to C ₂₊ Hydrocarbons. Angewandte Chemie, 2021, 133, 4546-4550.	2.0	11
31	Integrated selective nitrite reduction to ammonia with tetrahydroisoquinoline semi-dehydrogenation over a vacancy-rich Ni bifunctional electrode. Journal of Materials Chemistry A, 2021, 9, 239-243.	10.3	65
32	Unveiling the Activity Origin of Iron Nitride as Catalytic Material for Efficient Hydrogenation of CO ₂ to C ₂₊ Hydrocarbons. Angewandte Chemie - International Edition, 2021, 60, 4496-4500.	13.8	67
33	Anion Vacancy Engineering in Electrocatalytic Water Splitting. ChemNanoMat, 2021, 7, 102-109.	2.8	17
34	Electrosynthesis of Nitrate via the Oxidation of Nitrogen on Tensileâ€Strained Palladium Porous Nanosheets. Angewandte Chemie - International Edition, 2021, 60, 4474-4478.	13.8	116
35	Electrosynthesis of Nitrate via the Oxidation of Nitrogen on Tensileâ€6trained Palladium Porous Nanosheets. Angewandte Chemie, 2021, 133, 4524-4528.	2.0	28
36	Nitrate electroreduction: mechanism insight, <i>in situ</i> characterization, performance evaluation, and challenges. Chemical Society Reviews, 2021, 50, 6720-6733.	38.1	481

#	Article	IF	CITATIONS
37	Hollow cobalt sulfide nanocapsules for electrocatalytic selective transfer hydrogenation of cinnamaldehyde with water. Cell Reports Physical Science, 2021, 2, 100337.	5.6	24
38	Unveiling the In Situ Dissolution and Polymerization of Mo in Ni ₄ Mo Alloy for Promoting the Hydrogen Evolution Reaction. Angewandte Chemie - International Edition, 2021, 60, 7051-7055.	13.8	228
39	Co and Pt Dualâ€Singleâ€Atoms with Oxygenâ€Coordinated Co–O–Pt Dimer Sites for Ultrahigh Photocatalytic Hydrogen Evolution Efficiency. Advanced Materials, 2021, 33, e2003327.	21.0	123
40	Unveiling the In Situ Dissolution and Polymerization of Mo in Ni 4 Mo Alloy for Promoting the Hydrogen Evolution Reaction. Angewandte Chemie, 2021, 133, 7127-7131.	2.0	12
41	Optimization Strategies for Selective CO2 Electroreduction to Fuels. Transactions of Tianjin University, 2021, 27, 180-200.	6.4	50
42	Electrosynthesis of urea from nitrite and CO2 over oxygen vacancy-rich ZnO porous nanosheets. Cell Reports Physical Science, 2021, 2, 100378.	5.6	95
43	Photoinduced H ₂ Heterolysis to Form Mo ₂ NH _{<i>x</i>} Active Species for CO ₂ Reduction. ACS Energy Letters, 2021, 6, 2024-2029.	17.4	12
44	Catalytic Role of Metal Nanoparticles in Selectivity Control over Photodehydrogenative Coupling of Primary Amines to Imines and Secondary Amines. ACS Catalysis, 2021, 11, 6656-6661.	11,2	43
45	Using water as the hydrogen source for electrocatalytic transfer hydrogen storage. Science Bulletin, 2021, 66, 1047-1049.	9.0	9
46	Converting copper sulfide to copper with surface sulfur for electrocatalytic alkyne semi-hydrogenation with water. Nature Communications, 2021, 12, 3881.	12.8	77
47	Membrane-free selective oxidation of thioethers with water over a nickel phosphide nanocube electrode. Cell Reports Physical Science, 2021, 2, 100462.	5.6	18
48	Selenium Vacancy Promotes Transfer Semihydrogenation of Alkynes from Water Electrolysis. ACS Catalysis, 2021, 11, 9471-9478.	11.2	29
49	Promoting nitric oxide electroreduction to ammonia over electron-rich Cu modulated by Ru doping. Science China Chemistry, 2021, 64, 1493-1497.	8.2	83
50	Selectivity Origin of Organic Electrosynthesis Controlled by Electrode Materials: A Case Study on Pinacols. ACS Catalysis, 2021, 11, 8958-8967.	11.2	45
51	Integrating Hydrogen Production and Transfer Hydrogenation with Selenite Promoted Electrooxidation of αâ€Nitrotoluenes to <i>E</i> Alectrooxidation of αâ£Nitrotoluenes to <i>E</i> Alectrooxidation of î±â£Nitrotoluenes to <i>E</i> Ale	2.0	13
52	Amorphous nanomaterials in electrocatalytic water splitting. Chinese Journal of Catalysis, 2021, 42, 1287-1296.	14.0	92
53	Photoinduced Reaction Pathway Change for Boosting CO ₂ Hydrogenation over a MnO-Co Catalyst. ACS Catalysis, 2021, 11, 10316-10323.	11.2	17
54	Integrating Hydrogen Production and Transfer Hydrogenation with Selenite Promoted Electrooxidation of $\hat{l}\pm\hat{a}\in\mathbb{N}$ itrotoluenes to $\langle i\rangle$ E $\langle i\rangle$ $\hat{a}\in\mathbb{N}$ itroethenes. Angewandte Chemie - International Edition, 2021, 60, 22010-22016.	13.8	34

#	Article	IF	CITATIONS
55	A Facile Strategy for Constructing a Carbonâ€Particleâ€Modified Metal–Organic Framework for Enhancing the Efficiency of CO ₂ Electroreduction into Formate. Angewandte Chemie - International Edition, 2021, 60, 23394-23402.	13.8	58
56	A Facile Strategy for Constructing a Carbonâ€Particleâ€Modified Metal–Organic Framework for Enhancing the Efficiency of CO ₂ Electroreduction into Formate. Angewandte Chemie, 2021, 133, 23582-23590.	2.0	16
57	Self-supporting transition metal chalcogenides on metal substrates for catalytic water splitting. Chemical Engineering Journal, 2021, 421, 129645.	12.7	62
58	Water-involving transfer hydrogenation and dehydrogenation of N-heterocycles over a bifunctional MoNi4 electrode. Chinese Journal of Catalysis, 2021, 42, 1983-1991.	14.0	23
59	Sulfur Vacancy-Promoted Highly Selective Electrosynthesis of Functionalized Aminoarenes via Transfer Hydrogenation of Nitroarenes with H ₂ O over a Co ₃ S _{4â°'} <i> _x Nanosheet Cathode. CCS Chemistry, 2021, 3, 507-515.</i>	7.8	56
60	Ru-Doped Pd Nanoparticles for Nitrogen Electrooxidation to Nitrate. ACS Catalysis, 2021, 11, 14032-14037.	11.2	56
61	Engineering Nitrogen Vacancy in Polymeric Carbon Nitride for Nitrate Electroreduction to Ammonia. ACS Applied Materials & Diterfaces, 2021, 13, 54967-54973.	8.0	42
62	Solidâ€State Conversion Synthesis of Advanced Electrocatalysts for Water Splitting. Chemistry - A European Journal, 2020, 26, 3961-3972.	3.3	8
63	Potential-tuned selective electrosynthesis of azoxy-, azo- and amino-aromatics over a CoP nanosheet cathode. National Science Review, 2020, 7, 285-295.	9.5	107
64	Photocatalytic conversion of CO2 into light olefins over TiO2 nanotube confined Cu clusters with high ratio of Cu+. Applied Catalysis B: Environmental, 2020, 263, 118133.	20.2	54
65	Photothermally assisted photocatalytic conversion of CO ₂ â€"H ₂ O into fuels over a WNâ€"WO ₃ Z-scheme heterostructure. Journal of Materials Chemistry A, 2020, 8, 1077-1083.	10.3	48
66	Synthesis and characterization of size controlled alloy nanoparticles. Physical Sciences Reviews, 2020, 5 , .	0.8	1
67	Temperature-regulated reversible transformation of spinel-to-oxyhydroxide active species for electrocatalytic water oxidation. Journal of Materials Chemistry A, 2020, 8, 1631-1635.	10.3	33
68	Integrating photocatalytic reduction of CO2 with selective oxidation of tetrahydroisoquinoline over InP–In2O3 Z-scheme p-n junction. Science China Chemistry, 2020, 63, 28-34.	8.2	43
69	Progress and Challenges Toward the Rational Design of Oxygen Electrocatalysts Based on a Descriptor Approach. Advanced Science, 2020, 7, 1901614.	11.2	133
70	Unveiling the Promotion of Surfaceâ€Adsorbed Chalcogenate on the Electrocatalytic Oxygen Evolution Reaction. Angewandte Chemie, 2020, 132, 22656-22660.	2.0	32
71	Recent advances in nanostructured transition metal phosphides: synthesis and energy-related applications. Energy and Environmental Science, 2020, 13, 4564-4582.	30.8	268
72	Electrocatalytic Deuteration of Halides with D ₂ O as the Deuterium Source over a Copper Nanowire Arrays Cathode. Angewandte Chemie - International Edition, 2020, 59, 18527-18531.	13.8	68

#	Article	IF	CITATIONS
73	Selective Transfer Semihydrogenation of Alkynes with H ₂ O (D ₂ O) as the H (D) Source over a Pdâ€P Cathode. Angewandte Chemie - International Edition, 2020, 59, 21170-21175.	13.8	91
74	Plasma-regulated N-doped carbon nanotube arrays for efficient electrosynthesis of syngas with a wide CO/H2 ratio. Science China Materials, 2020, 63, 2351-2357.	6.3	15
75	Electrocatalytic Deuteration of Halides with D ₂ O as the Deuterium Source over a Copper Nanowire Arrays Cathode. Angewandte Chemie, 2020, 132, 18685-18689.	2.0	22
76	A nitrogen fixation strategy to synthesize NO <i>via</i> the thermally assisted photocatalytic conversion of air. Journal of Materials Chemistry A, 2020, 8, 19623-19630.	10.3	24
77	Selective Transfer Semihydrogenation of Alkynes with H 2 O (D 2 O) as the H (D) Source over a Pdâ€P Cathode. Angewandte Chemie, 2020, 132, 21356-21361.	2.0	15
78	Computational Design of Copper doped Indium for electrocatalytic Reduction of CO ₂ to Formic Acid. ChemCatChem, 2020, 12, 5632-5636.	3.7	13
79	Recent Progress, Challenges, and Prospects in Two-Dimensional Photo-Catalyst Materials and Environmental Remediation. Nano-Micro Letters, 2020, 12, 167.	27.0	57
80	Unveiling the Promotion of Surfaceâ€Adsorbed Chalcogenate on the Electrocatalytic Oxygen Evolution Reaction. Angewandte Chemie - International Edition, 2020, 59, 22470-22474.	13.8	257
81	Promoting selective electroreduction of nitrates to ammonia over electron-deficient Co modulated by rectifying Schottky contacts. Science China Chemistry, 2020, 63, 1469-1476.	8.2	155
82	Electrosynthesis of Syngas via the Co-Reduction of CO2 and H2O. Cell Reports Physical Science, 2020, 1, 100237.	5.6	42
83	Thermally assisted photocatalytic conversion of CO ₂ â€"H ₂ O to C ₂ H ₄ over carbon doped ln ₂ S ₃ nanosheets. Journal of Materials Chemistry A, 2020, 8, 10175-10179.	10.3	61
84	Synthesis of ammonia via an electroreduction removal of NO from exhausted gas: an upgrading to N2 fixation. Science China Chemistry, 2020, 63 , $1173-1174$.	8.2	13
85	Oxygen Vacancy Engineering in Photocatalysis. Solar Rrl, 2020, 4, 2000037.	5.8	196
86	Self-template synthesis of hierarchically structured Co3O4@NiO bifunctional electrodes for selective nitrate reduction and tetrahydroisoquinolines semi-dehydrogenation. Science China Materials, 2020, 63, 2530-2538.	6.3	54
87	Unveiling hydrocerussite as an electrochemically stable active phase for efficient carbon dioxide electroreduction to formate. Nature Communications, 2020, 11, 3415.	12.8	121
88	Preparation of hierarchical hollow structures assembled from porous NiCo 2 O 4 nanosheets for diesel soot elimination. EcoMat, 2020, 2, e12041.	11.9	2
89	Photoimmobilized Ni Clusters Boost Photodehydrogenative Coupling of Amines to Imines via Enhanced Hydrogen Evolution Kinetics. ACS Catalysis, 2020, 10, 3904-3910.	11.2	60
90	Boosting Selective Nitrate Electroreduction to Ammonium by Constructing Oxygen Vacancies in TiO ₂ . ACS Catalysis, 2020, 10, 3533-3540.	11.2	481

#	Article	IF	Citations
91	Unveiling the Activity Origin of a Copperâ€based Electrocatalyst for Selective Nitrate Reduction to Ammonia. Angewandte Chemie - International Edition, 2020, 59, 5350-5354.	13.8	760
92	Unveiling the Activity Origin of a Copperâ€based Electrocatalyst for Selective Nitrate Reduction to Ammonia. Angewandte Chemie, 2020, 132, 5388-5392.	2.0	92
93	Unveiling in situ evolved In/In2O3â^ heterostructure as the active phase of In2O3 toward efficient electroreduction of CO2 to formate. Science Bulletin, 2020, 65, 1547-1554.	9.0	105
94	Frontispiece: Solid‧tate Conversion Synthesis of Advanced Electrocatalysts for Water Splitting. Chemistry - A European Journal, 2020, 26, .	3.3	0
95	Integrating Hydrogen Production with Aqueous Selective Semiâ€Dehydrogenation of Tetrahydroisoquinolines over a Ni ₂ P Bifunctional Electrode. Angewandte Chemie, 2019, 131, 12142-12145.	2.0	138
96	Integrating Hydrogen Production with Aqueous Selective Semiâ€Dehydrogenation of Tetrahydroisoquinolines over a Ni ₂ P Bifunctional Electrode. Angewandte Chemie - International Edition, 2019, 58, 12014-12017.	13.8	189
97	Efficient Electrosynthesis of Syngas with Tunable CO/H ₂ Ratios over Zn _{<i>x</i>} Cd _{1â^³<i>x</i>} Sâ€Amine Inorganic–Organic Hybrids. Angewandte Chemie - International Edition, 2019, 58, 18908-18912.	13.8	94
98	Efficient Electrosynthesis of Syngas with Tunable CO/H 2 Ratios over Zn x Cd 1â^' x Sâ€Amine Inorganicâ€"Organic Hybrids. Angewandte Chemie, 2019, 131, 19084-19088.	2.0	7
99	Superficial Hydroxyl and Amino Groups Synergistically Active Polymeric Carbon Nitride for CO ₂ Electroreduction. ACS Catalysis, 2019, 9, 10983-10989.	11.2	105
100	Versatile Applications of Metal Singleâ€Atom @ 2D Material Nanoplatforms. Advanced Science, 2019, 6, 1901787.	11.2	128
101	Enhancing Electrocatalytic Water Splitting Activities via Photothermal Effect over Bifunctional Nickel/Reduced Graphene Oxide Nanosheets. ACS Sustainable Chemistry and Engineering, 2019, 7, 3710-3714.	6.7	59
102	Selenium vacancy-rich CoSe ₂ ultrathin nanomeshes with abundant active sites for electrocatalytic oxygen evolution. Journal of Materials Chemistry A, 2019, 7, 2536-2540.	10.3	99
103	Recent Advances in Electrochemical Hydrogen Production from Water Assisted by Alternative Oxidation Reactions. ChemElectroChem, 2019, 6, 3214-3226.	3.4	187
104	Bin Zhang. Angewandte Chemie - International Edition, 2019, 58, 14798-14798.	13.8	0
105	Insights into Singleâ€Atom Metal–Support Interactions in Electrocatalytic Water Splitting. Small Methods, 2019, 3, 1800481.	8.6	94
106	Electrochemical synthesis of nitric acid from air and ammonia through waste utilization. National Science Review, 2019, 6, 730-738.	9.5	296
107	In Situ Electrochemical Conversion of an Ultrathin Tannin Nickel Iron Complex Film as an Efficient Oxygen Evolution Reaction Electrocatalyst. Angewandte Chemie, 2019, 131, 3809-3813.	2.0	22
108	Self-Floating Carbonized Tissue Membrane Derived from Commercial Facial Tissue for Highly Efficient Solar Steam Generation. ACS Sustainable Chemistry and Engineering, 2019, 7, 2911-2915.	6.7	76

#	Article	IF	CITATIONS
109	In Situ Electrochemical Conversion of an Ultrathin Tannin Nickel Iron Complex Film as an Efficient Oxygen Evolution Reaction Electrocatalyst. Angewandte Chemie - International Edition, 2019, 58, 3769-3773.	13.8	188
110	Understanding the Nature of Ammonia Treatment to Synthesize Oxygen Vacancy-Enriched Transition Metal Oxides. CheM, 2019, 5, 376-389.	11.7	171
111	MnO 2 â€Mediated Synthesis of Mn 3 O 4 @CaMn 7 O 12 Core@Shell Nanorods for Electrocatalytic Oxygen Reduction Reaction. ChemElectroChem, 2019, 6, 618-622.	3.4	3
112	Single-Atom Au/NiFe Layered Double Hydroxide Electrocatalyst: Probing the Origin of Activity for Oxygen Evolution Reaction. Journal of the American Chemical Society, 2018, 140, 3876-3879.	13.7	817
113	Photokatalytische Deuterierung von Halogeniden mit D ₂ O ýber porösen CdSeâ€Nanoschichten. Angewandte Chemie, 2018, 130, 5690-5693.	2.0	1
114	Self-template synthesis of double-layered porous nanotubes with spatially separated photoredox surfaces for efficient photocatalytic hydrogen production. Science Bulletin, 2018, 63, 601-608.	9.0	65
115	Photocatalytic Deuteration of Halides Using D ₂ O over CdSe Porous Nanosheets: A Mild and Controllable Route to Deuterated Molecules. Angewandte Chemie - International Edition, 2018, 57, 5590-5592.	13.8	22
116	Engineering oxygen-containing and amino groups into two-dimensional atomically-thin porous polymeric carbon nitrogen for enhanced photocatalytic hydrogen production. Energy and Environmental Science, 2018, 11, 566-571.	30.8	304
117	Design of continuous built-in band bending in self-supported CdS nanorod-based hierarchical architecture for efficient photoelectrochemical hydrogen production. Nano Energy, 2018, 43, 236-243.	16.0	58
118	Hydrogen evolution activity enhancement by tuning the oxygen vacancies in self-supported mesoporous spinel oxide nanowire arrays. Nano Research, 2018, 11, 603-613.	10.4	152
119	Plasma-Assisted Synthesis of NiSe ₂ Ultrathin Porous Nanosheets with Selenium Vacancies for Supercapacitor. ACS Applied Materials & Samp; Interfaces, 2018, 10, 41861-41865.	8.0	104
120	Boosting ethanol electrooxidation <i>via</i> photothermal effect over palladium/reduced graphene oxide. Journal of Materials Chemistry A, 2018, 6, 18426-18429.	10.3	16
121	Oxidant-free dehydrogenative coupling via electrooxidation: a mild, green, and sustainable route to synthesize aryl amines integrated with hydrogen evolution. Science Bulletin, 2018, 63, 666-668.	9.0	7
122	Synergetic Transformation of Solid Inorganic–Organic Hybrids into Advanced Nanomaterials for Catalytic Water Splitting. Accounts of Chemical Research, 2018, 51, 1711-1721.	15.6	196
123	Engineering Sulfur Defects, Atomic Thickness, and Porous Structures into Cobalt Sulfide Nanosheets for Efficient Electrocatalytic Alkaline Hydrogen Evolution. ACS Catalysis, 2018, 8, 8077-8083.	11.2	219
124	Boosting Electrocatalytic Hydrogen-Evolving Activity of Co/CoO Heterostructured Nanosheets via Coupling Photogenerated Carriers with Photothermy. ACS Sustainable Chemistry and Engineering, 2018, 6, 11206-11210.	6.7	22
125	Identifying the high activity of the basal plane in 1T′-phase MoS ₂ towards electrochemical hydrogen evolution. Inorganic Chemistry Frontiers, 2018, 5, 1490-1492.	6.0	6
126	Boosting Hydrogen Production by Anodic Oxidation of Primary Amines over a NiSe Nanorod Electrode. Angewandte Chemie, 2018, 130, 13347-13350.	2.0	69

#	Article	IF	Citations
127	Boosting Hydrogen Production by Anodic Oxidation of Primary Amines over a NiSe Nanorod Electrode. Angewandte Chemie - International Edition, 2018, 57, 13163-13166.	13.8	312
128	Pearson's principle-inspired strategy for the synthesis of amorphous transition metal hydroxide hollow nanocubes for electrocatalytic oxygen evolution. Materials Chemistry Frontiers, 2018, 2, 1523-1528.	5.9	33
129	Boosting Photoelectrochemical Water Oxidation Activity and Stability of Mo-Doped BiVO ₄ through the Uniform Assembly Coating of NiFe–Phenolic Networks. ACS Energy Letters, 2018, 3, 1648-1654.	17.4	116
130	Sub-1.1 nm ultrathin porous CoP nanosheets with dominant reactive {200} facets: a high mass activity and efficient electrocatalyst for the hydrogen evolution reaction. Chemical Science, 2017, 8, 2769-2775.	7.4	243
131	Promoting charge carrier utilization by integrating layered double hydroxide nanosheet arrays with porous BiVO4 photoanode for efficient photoelectrochemical water splitting. Science China Materials, 2017, 60, 193-207.	6.3	57
132	N-doped graphene wrapped hexagonal metallic cobalt hierarchical nanosheet as a highly efficient water oxidation electrocatalyst. Journal of Materials Chemistry A, 2017, 5, 8897-8902.	10.3	50
133	Adjusting the electronic structure by Ni incorporation: a generalized in situ electrochemical strategy to enhance water oxidation activity of oxyhydroxides. Journal of Materials Chemistry A, 2017, 5, 13336-13340.	10.3	49
134	In situ electrochemically converting Fe2O3-Ni(OH)2 to NiFe2O4-NiOOH: a highly efficient electrocatalyst towards water oxidation. Science China Materials, 2017, 60, 324-334.	6.3	107
135	Enhancing Oxygen Evolution Reaction at High Current Densities on Amorphousâ€Like Ni–Fe–S Ultrathin Nanosheets via Oxygen Incorporation and Electrochemical Tuning. Advanced Science, 2017, 4, 1600343.	11.2	121
136	Active Cocatalysts for Photocatalytic Hydrogen Evolution Derived from Nickel or Cobalt Amine Complexes. Angewandte Chemie - International Edition, 2017, 56, 14804-14806.	13.8	28
137	Photogenerated Carriers Boost Water Splitting Activity over Transition-Metal/Semiconducting Metal Oxide Bifunctional Electrocatalysts. ACS Catalysis, 2017, 7, 6464-6470.	11.2	62
138	Thermally stable single atom Pt/m -Al2O3 for selective hydrogenation and CO oxidation. Nature Communications, 2017, 8, 16100.	12.8	545
139	Controlled synthesis of hierarchically crossed metal oxide nanosheet arrays for diesel soot elimination. Chemical Communications, 2017, 53, 8517-8520.	4.1	13
140	Aktive Cokatalysatoren mit molekularen Nickel―und Cobaltkomplexen fýr die photokatalytische Wasserstoffentwicklung. Angewandte Chemie, 2017, 129, 14998-15000.	2.0	6
141	Engineering transition metal phosphide nanomaterials as highly active electrocatalysts for water splitting. Dalton Transactions, 2017, 46, 16770-16773.	3.3	28
142	General Selfâ€Template Synthesis of Transitionâ€Metal Oxide and Chalcogenide Mesoporous Nanotubes with Enhanced Electrochemical Performances. Angewandte Chemie, 2016, 128, 9201-9205.	2.0	28
143	General Selfâ€Template Synthesis of Transitionâ€Metal Oxide and Chalcogenide Mesoporous Nanotubes with Enhanced Electrochemical Performances. Angewandte Chemie - International Edition, 2016, 55, 9055-9059.	13.8	154
144	Stabilizing a Platinum ₁ Singleâ€Atom Catalyst on Supported Phosphomolybdic Acid without Compromising Hydrogenation Activity. Angewandte Chemie - International Edition, 2016, 55, 8319-8323.	13.8	350

#	Article	IF	Citations
145	Ni3Se2 nanoforest/Ni foam as a hydrophilic, metallic, and self-supported bifunctional electrocatalyst for both H2 and O2 generations. Nano Energy, 2016, 24, 103-110.	16.0	377
146	Spontaneous Electroless Deposition of Ultrafine Pd Nanoparticles on Poly(phenylene butadiynylene)s for the Hydroxycarbonylation of Aryl lodides. ChemistrySelect, 2016, 1, 1832-1836.	1.5	3
147	Waterâ€dispersible Hollow Microporous Organic Network Spheres as Substrate for Electroless Deposition of Ultrafine Pd Nanoparticles with High Catalytic Activity and Recyclability. Chemistry - an Asian Journal, 2016, 11, 3178-3182.	3.3	11
148	Anchoring CoO Domains on CoSe ₂ Nanobelts as Bifunctional Electrocatalysts for Overall Water Splitting in Neutral Media. Advanced Science, 2016, 3, 1500426.	11.2	236
149			

#	Article	IF	CITATIONS
163	Light-mediated cascade transformation of activated alkenes: BiOBr nanosheets as efficient photocatalysts for the synthesis of \hat{l} ±-aryl- \hat{l} 2-trifluoromethyl amides. RSC Advances, 2015, 5, 61199-61203.	3.6	21
164	One-pot two-step facile synthesis of 2,3,5,6-tetrafluorobenzonitrile-containing dithiocarbamic acid esters. Tetrahedron Letters, 2015, 56, 5135-5139.	1.4	17
165	Converting 2D inorganic–organic ZnSe–DETA hybrid nanosheets into 3D hierarchical nanosheet-based ZnSe microspheres with enhanced visible-light-driven photocatalytic performances. Nanoscale, 2015, 7, 9752-9759.	5.6	27
166	Hydrogen photogeneration from water on the biomimetic hybrid artificial photocatalytic systems of semiconductors and earth-abundant metal complexes: progress and challenges. Catalysis Science and Technology, 2015, 5, 3084-3096.	4.1	40
167	Base-promoted direct and highly selective alkynylation of electron-deficient octafluorotoluene. RSC Advances, 2015, 5, 31993-31997.	3.6	14
168	Light-induced BiOBr nanosheets accelerated highly regioselective intermolecular trifluoromethylation/arylation of alkenes to synthesize CF3-containing aza-heterocycles. Tetrahedron, 2015, 71, 4344-4351.	1.9	34
169	Hierarchical ultrathin-branched CdS nanowire arrays with enhanced photocatalytic performance. Journal of Materials Chemistry A, 2015, 3, 19507-19516.	10.3	44
170	Light triggered addition/annulation of 2-isocyanobiphenyls toward 6-trifluoromethyl-phenanthridines under photocatalyst-free conditions. RSC Advances, 2015, 5, 76363-76367.	3.6	24
171	Self-assembled synthesis of hierarchical Zn ₂ GeO ₄ core–shell microspheres with enhanced photocatalytic activity. Dalton Transactions, 2015, 44, 75-82.	3.3	21
172	Diethylenetriamine-assisted hydrothermal synthesis of dodecahedral α-Fe ₂ O ₃ nanocrystals with enhanced and stable photoelectrochemical activity. CrystEngComm, 2015, 17, 27-31.	2.6	11
173	Recent advances in porous Pt-based nanostructures: synthesis and electrochemical applications. Chemical Society Reviews, 2014, 43, 2439.	38.1	443
174	In-situ photo-reducing graphene oxide to create Zn0.5Cd0.5S porous nanosheets/RGO composites as highly stable and efficient photoelectrocatalysts for visible-light-driven water splitting. International Journal of Hydrogen Energy, 2014, 39, 702-710.	7.1	26
175	Base initiated aromatization/CO bond formation: a new entry to O-pyrazole polyfluoroarylated ethers. Tetrahedron Letters, 2014, 55, 6534-6537.	1.4	9
176	One-pot two-step sequential transformation: Highly efficient construction of o-2,3,5,6-tetrafluorobenzonitrile substituted oximes ethers. Journal of Fluorine Chemistry, 2014, 165, 101-108.	1.7	6
177	Facile synthesis of 3D Pd–P nanoparticle networks with enhanced electrocatalytic performance towards formic acid electrooxidation. Chemical Communications, 2014, 50, 13451-13453.	4.1	93
178	Sulfur copolymer nanowires with enhanced visible-light photoresponse. Chemical Communications, 2014, 50, 11208-11210.	4.1	32
179	Nanoporous Hollow Transition Metal Chalcogenide Nanosheets Synthesized <i>via</i> the Anion-Exchange Reaction of Metal Hydroxides with Chalcogenide Ions. ACS Nano, 2014, 8, 10909-10919.	14.6	208
180	Highly selective synthesis of 1-polyfluoroaryl-1,2,3-triazoles via a one-pot three-component reaction. Tetrahedron Letters, 2014, 55, 5033-5037.	1.4	21

#	Article	IF	CITATIONS
181	Interfacial nanodroplets guided construction of hierarchical Au, Au-Pt and Au-Pd particles as excellent catalysts. Scientific Reports, 2014, 4, 4849.	3.3	43
182	Selective C4–F bond cleavage of pentafluorobenzene: synthesis of N-tetrafluoroarylated heterocyclic compounds. Tetrahedron Letters, 2013, 54, 4649-4652.	1.4	29
183	Porous single-crystalline CdS nanosheets as efficient visible light catalysts for aerobic oxidative coupling of amines to imines. RSC Advances, 2013, 3, 22944.	3.6	61
184	Selective C4â^'F bond cleavage/Câ^'O bond formation of polyfluoroarenes with phenols and benzyl alcohols. Journal of Fluorine Chemistry, 2013, 156, 51-60.	1.7	23
185	Synthesis of ultrathin CdS nanosheets as efficient visible-light-driven water splitting photocatalysts for hydrogen evolution. Chemical Communications, 2013, 49, 9803.	4.1	303
186	Anion-exchange synthesis of nanoporous FeP nanosheets as electrocatalysts for hydrogen evolution reaction. Chemical Communications, 2013, 49, 6656.	4.1	439
187	Conversion of CuO Nanoplates into Porous Hybrid Cu ₂ O/Polypyrrole Nanoflakes through a Pyrroleâ€Induced Reductive Transformation Reaction. Chemistry - an Asian Journal, 2013, 8, 1120-1127.	3.3	23
188	Hierarchical Nanosheetâ€Based MoS ₂ Nanotubes Fabricated by an Anionâ€Exchange Reaction of MoO ₃ â€"Amine Hybrid Nanowires. Angewandte Chemie - International Edition, 2013, 52, 8602-8606.	13.8	180
189	Self-supported Pt nanoclusters via galvanic replacement from Cu2O nanocubes as efficient electrocatalysts. Nanoscale, 2013, 5, 7397.	5.6	56
190	Regioselective C-S Bond Formation Accomplished by Regioselective C-F Substitution of Polyfluoroarenes with Substituted Thiophenols. Letters in Organic Chemistry, 2012, 9, 175-182.	0.5	8
191	Room-temperature Fast Synthesis of Composition-adjustable Pt–Pd Alloy Sub-10-nm Nanoparticle Networks with Improved Electrocatalytic Activities. Chemistry Letters, 2012, 41, 546-548.	1.3	3
192	Shape-controlled self-assembly of colloidal nanoparticles. Chemical Science, 2012, 3, 2252.	7.4	14
193	Synergism of interparticle electrostatic repulsion modulation and heat-induced fusion: a generalized one-step approach to porous network-like noble metals and their alloy nanostructures. Journal of Materials Chemistry, 2012, 22, 349-354.	6.7	25
194	One-step synthesis of three-dimensional Pd polyhedron networks with enhanced electrocatalytic performance. Chemical Communications, 2012, 48, 3881.	4.1	39
195	Electrostatic Repulsion-Controlled Formation of Polydopamine–Gold Janus Particles. Langmuir, 2012, 28, 13060-13065.	3.5	58
196	Facile one-step room-temperature synthesis of Pt ₃ Ni nanoparticle networks with improved electro-catalytic properties. Chemical Communications, 2012, 48, 2665-2667.	4.1	75
197	Synthesis of Hollow Cd _{<i>x</i>} Zn _{1â°'<i>x</i>} Se Nanoframes through the Selective Cation Exchange of Inorganicâ€"Organic Hybrid ZnSeâ€"Amine Nanoflakes with Cadmium Ions. Angewandte Chemie - International Edition, 2012, 51, 3211-3215.	13.8	109
198	Compositionâ€Tunable Pt–Co Alloy Nanoparticle Networks: Facile Roomâ€Temperature Synthesis and Supportless Electrocatalytic Applications. ChemPhysChem, 2012, 13, 2601-2609.	2.1	42

#	Article	IF	CITATIONS
199	Regioselective C–S bond formation accomplished by copper-catalyzed regioselective C–F substitution of perfluoroarenes with aryl thioacetates or benzyl thioacetate. Tetrahedron, 2012, 68, 4233-4241.	1.9	11
200	Nanoporous Singleâ€Crystalâ€Like Cd _{<i>x</i>} Zn _{1â^'<i>x</i>} S Nanosheets Fabricated by the Cationâ€Exchange Reaction of Inorganicâ€"Organic Hybrid ZnSâ€"Amine with Cadmium lons. Angewandte Chemie - International Edition, 2012, 51, 897-900.	13.8	212
201	Conversion of Sb ₂ Te ₃ Hexagonal Nanoplates into Threeâ€Dimensional Porous Singleâ€Crystalâ€Like Networkâ€Structured Te Plates Using Oxygen and Tartaric Acid. Angewandte Chemie - International Edition, 2012, 51, 1459-1463.	13.8	42
202	Converting inorganic–organic hybrid sulfides into oxides: A general strategy to hierarchical-porous-structured thermal-stable metal oxides with improved catalytic performance. Journal of Materials Chemistry, 2011, 21, 10525.	6.7	12
203	Cu ₂ O Nanocrystals: Surfactant-Free Room-Temperature Morphology-Modulated Synthesis and Shape-Dependent Heterogeneous Organic Catalytic Activities. Journal of Physical Chemistry C, 2011, 115, 15288-15296.	3.1	152
204	Vacuolization and apoptosis induced by nano-selenium in HeLa cell line. Science China Chemistry, 2010, 53, 2272-2278.	8.2	15
205	Nanowire Transformation by Size-Dependent Cation Exchange Reactions. Nano Letters, 2010, 10, 149-155.	9.1	74
206	Size-Dependent Waveguide Dispersion in Nanowire Optical Cavities: Slowed Light and Dispersionless Guiding. Nano Letters, 2009, 9, 1684-1688.	9.1	63
207	L-Cysteine-Assisted Synthesis of PbS Nanocube-Based Pagoda-like Hierarchical Architectures. Journal of Physical Chemistry C, 2008, 112, 2831-2835.	3.1	80
208	A facile solution-phase deposition approach to porous selenium materials. Journal of Materials Chemistry, 2007, 17, 2706.	6.7	27
209	Porous metastable \hat{I}^3 -MnS networks: biomolecule-assisted synthesis and optical properties. Nanotechnology, 2007, 18, 215608.	2.6	38
210	1D Tellurium Nanostructures: Photothermally Assisted Morphology-Controlled Synthesis and Applications in Preparing Functional Nanoscale Materials. Advanced Functional Materials, 2007, 17, 486-492.	14.9	104
211	Multiarmed Tubular Selenium with Potentially Unique Electrical Properties: Solution-Phase Synthesis and First-Principles Calculation. Small, 2007, 3, 101-105.	10.0	13
212	SERS Study of Electro-oxidation of Formic Acid on Pt-Ru/GC. Acta Physico-chimica Sinica, 2006, 22, 291-295.	0.6	5
213	Biomolecule-Assisted Synthesis and Electrochemical Hydrogen Storage of Bi2S3Flowerlike Patterns with Well-Aligned Nanorods. Journal of Physical Chemistry B, 2006, 110, 8978-8985.	2.6	334
214	Biomolecule-Assisted Synthesis and Electrochemical Hydrogen Storage of Porous Spongelike Ni3S2 Nanostructures Grown Directly on Nickel Foils. Chemistry - A European Journal, 2006, 12, 2337-2342.	3.3	169
215	Photothermally Assisted Solution-Phase Synthesis of Microscale Tubes, Rods, Shuttles, and an Urchin-Like Assembly of Single-Crystalline Trigonal Selenium. Angewandte Chemie - International Edition, 2006, 45, 2571-2574.	13.8	65
216	Biomolecule-assisted synthesis of single-crystalline selenium nanowires and nanoribbons via a novel flake-cracking mechanism. Nanotechnology, 2006, 17, 385-390.	2.6	79

#	Article	lF	CITATIONS
217	Electrochemical and Surfaced-Enhanced Raman Spectroscopic Investigation of CO and SCN-Adsorbed on Aucoreâ° PtshellNanoparticles Supported on GC Electrodes. Langmuir, 2005, 21, 7449-7455.	3.5	47
218	Solution-Phase Synthesis and Electrochemical Hydrogen Storage of Ultra-Long Single-Crystal Selenium Submicrotubes. Journal of Physical Chemistry B, 2005, 109, 22830-22835.	2.6	38