
## Jorge Alegre-Cebollada

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7440273/publications.pdf Version: 2024-02-01



| #  | Article                                                                                                                                                                                        | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | A Network of Macrophages Supports Mitochondrial Homeostasis in the Heart. Cell, 2020, 183, 94-109.e23.                                                                                         | 13.5 | 360       |
| 2  | Single-molecule paleoenzymology probes the chemistry of resurrected enzymes. Nature Structural and Molecular Biology, 2011, 18, 592-596.                                                       | 3.6  | 182       |
| 3  | S-Glutathionylation of Cryptic Cysteines Enhances Titin Elasticity by Blocking Protein Folding. Cell, 2014, 156, 1235-1246.                                                                    | 13.5 | 170       |
| 4  | Protein Folding Drives Disulfide Formation. Cell, 2012, 151, 794-806.                                                                                                                          | 13.5 | 158       |
| 5  | Fungal ribotoxins: molecular dissection of a family of natural killers. FEMS Microbiology Reviews, 2007, 31, 212-237.                                                                          | 3.9  | 126       |
| 6  | Direct observation of disulfide isomerization in a single protein. Nature Chemistry, 2011, 3, 882-887.                                                                                         | 6.6  | 121       |
| 7  | Nicotinamide for the treatment of heart failure with preserved ejection fraction. Science Translational Medicine, 2021, 13, .                                                                  | 5.8  | 109       |
| 8  | Nanomechanics of HaloTag Tethers. Journal of the American Chemical Society, 2013, 135, 12762-12771.                                                                                            | 6.6  | 108       |
| 9  | Force dependency of biochemical reactions measured by single-molecule force-clamp spectroscopy.<br>Nature Protocols, 2013, 8, 1261-1276.                                                       | 5.5  | 101       |
| 10 | Isopeptide Bonds Block the Mechanical Extension of Pili in Pathogenic Streptococcus pyogenes.<br>Journal of Biological Chemistry, 2010, 285, 11235-11242.                                      | 1.6  | 94        |
| 11 | The behavior of sea anemone actinoporins at the water–membrane interface. Biochimica Et Biophysica<br>Acta - Biomembranes, 2011, 1808, 2275-2288.                                              | 1.4  | 76        |
| 12 | Disulfide isomerization reactions in titin immunoglobulinÂdomains enable a mode of protein elasticity.<br>Nature Communications, 2018, 9, 185.                                                 | 5.8  | 70        |
| 13 | Single-molecule Force Spectroscopy Approach to Enzyme Catalysis. Journal of Biological Chemistry, 2010, 285, 18961-18966.                                                                      | 1.6  | 67        |
| 14 | Sea Anemone Actinoporins: The Transition from a Folded Soluble State to a Functionally Active<br>Membrane-Bound Oligomeric Pore. Current Protein and Peptide Science, 2007, 8, 558-572.        | 0.7  | 63        |
| 15 | CnaA domains in bacterial pili are efficient dissipaters of large mechanical shocks. Proceedings of the<br>National Academy of Sciences of the United States of America, 2016, 113, 2490-2495. | 3.3  | 60        |
| 16 | Calorimetric Scrutiny of Lipid Binding by Sticholysin II Toxin Mutants. Journal of Molecular Biology, 2008, 382, 920-930.                                                                      | 2.0  | 51        |
| 17 | An Abl-FBP17 mechanosensing system couples local plasma membrane curvature and stress fiber remodeling during mechanoadaptation. Nature Communications, 2019, 10, 5828.                        | 5.8  | 50        |
| 18 | Detergent-resistant membranes are platforms for actinoporin pore-forming activity on intact cells.<br>FEBS Journal, 2006, 273, 863-871.                                                        | 2.2  | 49        |

JORGE ALEGRE-CEBOLLADA

| #  | Article                                                                                                                                                                                                                         | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Three-dimensional structure of the actinoporin sticholysin I. Influence of long-distance effects on protein function. Archives of Biochemistry and Biophysics, 2013, 532, 39-45.                                                | 1.4 | 47        |
| 20 | A HaloTag-TEV genetic cassette for mechanical phenotyping of proteins from tissues. Nature<br>Communications, 2020, 11, 2060.                                                                                                   | 5.8 | 42        |
| 21 | Infrared Spectroscopy Study on the Conformational Changes Leading to Pore Formation of the Toxin Sticholysin II. Biophysical Journal, 2007, 93, 3191-3201.                                                                      | 0.2 | 39        |
| 22 | Specific interactions of sticholysin I with model membranes: An NMR study. Proteins: Structure,<br>Function and Bioinformatics, 2010, 78, 1959-1970.                                                                            | 1.5 | 36        |
| 23 | Silent mutations at the 5′-end of the cDNA of actinoporins from the sea anemone Stichodactyla<br>helianthus allow their heterologous overproduction in Escherichia coli. Journal of Biotechnology,<br>2007, 127, 211-221.       | 1.9 | 35        |
| 24 | Phenotypic selection and characterization of randomly produced non-haemolytic mutants of the toxic sea anemone protein sticholysin II. FEBS Letters, 2004, 575, 14-18.                                                          | 1.3 | 34        |
| 25 | Mechanochemical evolution of the giant muscle protein titin as inferred from resurrected proteins.<br>Nature Structural and Molecular Biology, 2017, 24, 652-657.                                                               | 3.6 | 30        |
| 26 | The Therapeutic Potential of Fungal Ribotoxins. Current Pharmaceutical Biotechnology, 2008, 9,<br>153-160.                                                                                                                      | 0.9 | 28        |
| 27 | Protein Hydrogels: The Swiss Army Knife for Enhanced Mechanical and Bioactive Properties of Biomaterials. Nanomaterials, 2021, 11, 1656.                                                                                        | 1.9 | 27        |
| 28 | 1H, 13C, and 15N NMR assignments of the actinoporin Sticholysin I. Biomolecular NMR Assignments, 2009, 3, 5-7.                                                                                                                  | 0.4 | 24        |
| 29 | Conformational Plasticity of the Essential Membrane-associated Mannosyltransferase PimA from<br>Mycobacteria. Journal of Biological Chemistry, 2013, 288, 29797-29808.                                                          | 1.6 | 24        |
| 30 | Protein haploinsufficiency drivers identify MYBPC3 variants that cause hypertrophic cardiomyopathy.<br>Journal of Biological Chemistry, 2021, 297, 100854.                                                                      | 1.6 | 23        |
| 31 | Intrinsic local disorder and a network of charge–charge interactions are key to actinoporin<br>membrane disruption and cytotoxicity. FEBS Journal, 2011, 278, 2080-2089.                                                        | 2.2 | 21        |
| 32 | Synergistic Action of Actinoporin Isoforms from the Same Sea Anemone Species Assembled into<br>Functionally Active Heteropores. Journal of Biological Chemistry, 2016, 291, 14109-14119.                                        | 1.6 | 21        |
| 33 | Protein nanomechanics in biological context. Biophysical Reviews, 2021, 13, 435-454.                                                                                                                                            | 1.5 | 21        |
| 34 | Protein Thermodynamic Destabilization in the Assessment of Pathogenicity of a Variant of Uncertain<br>Significance in Cardiac Myosin Binding Protein C. Journal of Cardiovascular Translational Research,<br>2020, 13, 867-877. | 1.1 | 18        |
| 35 | Identifying Sequential Substrate Binding at the Single-Molecule Level by Enzyme Mechanical<br>Stabilization. ACS Nano, 2015, 9, 3996-4005.                                                                                      | 7.3 | 16        |
| 36 | Concurrent atomic force spectroscopy. Communications Physics, 2019, 2, .                                                                                                                                                        | 2.0 | 16        |

JORGE ALEGRE-CEBOLLADA

| #  | Article                                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Nanomechanical Phenotypes in Cardiac Myosin-Binding Protein C Mutants That Cause Hypertrophic<br>Cardiomyopathy. ACS Nano, 2021, 15, 10203-10216.                                                                                                               | 7.3  | 16        |
| 38 | 1H, 13C, and 15N NMR assignments of StnII-Y111N, a highly impaired mutant of the sea anemone actinoporin Sticholysin II. Biomolecular NMR Assignments, 2010, 4, 69-72.                                                                                          | 0.4  | 14        |
| 39 | Altered Thiol Chemistry in Human Amyotrophic Lateral Sclerosis-linked Mutants of Superoxide<br>Dismutase 1. Journal of Biological Chemistry, 2014, 289, 26722-26732.                                                                                            | 1.6  | 14        |
| 40 | Redox regulation of protein nanomechanics in health and disease: Lessons from titin. Redox Biology, 2019, 21, 101074.                                                                                                                                           | 3.9  | 13        |
| 41 | The mechanics of the heart: zooming in on hypertrophic cardiomyopathy and cMyBP . FEBS Letters, 2022, 596, 703-746.                                                                                                                                             | 1.3  | 12        |
| 42 | Spontaneous Dimerization of Titin Protein Z1Z2 Domains Induces Strong Nanomechanical Anchoring.<br>Journal of Biological Chemistry, 2012, 287, 20240-20247.                                                                                                     | 1.6  | 11        |
| 43 | A Novel Strategy for Utilizing Voice Coil Servoactuators in Tensile Tests of Low Volume Protein<br>Hydrogels. Macromolecular Materials and Engineering, 2015, 300, 369-376.                                                                                     | 1.7  | 11        |
| 44 | 1H, 13C, and 15N NMR assignments of StnII-R29Q, a defective lipid binding mutant of the sea anemone<br>actinoporin Sticholysin II. Biomolecular NMR Assignments, 2009, 3, 239-241.                                                                              | 0.4  | 7         |
| 45 | Basal oxidation of conserved cysteines modulates cardiac titin stiffness and dynamics. Redox Biology, 2022, 52, 102306.                                                                                                                                         | 3.9  | 7         |
| 46 | Protease Power Strokes Force Proteins to Unfold. Cell, 2011, 145, 339-340.                                                                                                                                                                                      | 13.5 | 6         |
| 47 | Lactococcus lactis as a vehicle for the heterologous expression of fungal ribotoxin variants with reduced IgE-binding affinity. Journal of Biotechnology, 2008, 134, 1-8.                                                                                       | 1.9  | 5         |
| 48 | Correspondence on "Computational prediction of protein subdomain stability in MYBPC3 enables<br>clinical risk stratification in hypertrophic cardiomyopathy and enhances variant interpretation―by<br>Thompson et al Genetics in Medicine, 2021, 23, 2009-2010. | 1.1  | 3         |
| 49 | Halotag Tethers to Study Titin Folding at the Single Molecule Level. Biophysical Journal, 2014, 106, 391a.                                                                                                                                                      | 0.2  | 1         |
| 50 | Solvent Bridging Determines The Molecular Architecture Of The Unfolding Transition State Of A<br>Protein. Biophysical Journal, 2009, 96, 72a-73a.                                                                                                               | 0.2  | 0         |
| 51 | Towards a General Platform to Study Single-Bond Chemistry Under Force. Biophysical Journal, 2012, 102, 11a-12a.                                                                                                                                                 | 0.2  | 0         |
| 52 | Surviving a Bumpy Ride in the Oropharynx: Bacterial Pili as Nano-Seatbelts that Dissipate Mechanical<br>Energy. Biophysical Journal, 2014, 106, 578a.                                                                                                           | 0.2  | 0         |
| 53 | Nanomechanical Phenotypes in Hypertrophic Cardiomyopathy caused by Missense Mutations in Cardiac<br>Myosin-Binding Protein C. Biophysical Journal, 2017, 112, 164a-165a.                                                                                        | 0.2  | 0         |
| 54 | Specific Cleavage of the Titin Springs In Situ Uncovers the Role of Titin-Based Force in Sarcomere<br>Structure and Muscle Contraction. Biophysical Journal, 2019, 116, 402a.                                                                                   | 0.2  | 0         |

| #  | Article                                                                                                                                           | IF  | CITATIONS |
|----|---------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Independent Tuning of Viscous and Elastic Properties of Protein Biomaterials. Biophysical Journal, 2020, 118, 163a-164a.                          | 0.2 | 0         |
| 56 | Crystallographic Structures of Titin Immunoglobulin-Like I21 Domains Involved in Dilated<br>Cardiomyopathy. Biophysical Journal, 2021, 120, 252a. | 0.2 | 0         |
| 57 | Enzyme Catalysis at the Single-Molecule Level. , 2012, , 149-168.                                                                                 |     | 0         |