Haydee De Clippeleir

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7440209/publications.pdf

Version: 2024-02-01

90 papers 2,399 citations

279487 23 h-index 214527 47 g-index

91 all docs 91 docs citations

times ranked

91

1670 citing authors

#	Article	IF	CITATIONS
1	Partial denitrification–anammox (PdNA) application in mainstream IFAS configuration using raw fermentate as carbon source. Water Environment Research, 2022, 94, e10711.	1.3	18
2	Mainstream short-cut N removal modelling: current status and perspectives. Water Science and Technology, 2022, 85, 2539-2564.	1,2	5
3	Startup strategies for mainstream anammox polishing in moving bed biofilm reactors. Water Environment Research, 2022, 94, .	1.3	9
4	Mainstream partial denitrificationâ€anammox in sand and expanded clay deepâ€bed polishing filters under practical loading rates and backwashing conditions. Water Environment Research, 2022, 94, .	1.3	5
5	Fullâ€scale transition from denitrification to partial denitrification–anammox (PdNA) in deepâ€bed filters: Operational strategies for and benefits of PdNA implementation. Water Environment Research, 2022, 94, .	1.3	11
6	Nitrogen removal capacity and carbon demand requirements of partial denitrification/anammox MBBR and IFAS processes. Water Environment Research, 2022, 94, .	1.3	7
7	Investigating the dynamics of volatile sulfur compound emission from primary systems at a water resource recovery facility. Water Environment Research, 2021, 93, 316-327.	1.3	4
8	Primary sludge fermentate as carbon source for mainstream partial denitrification–anammox (PdNA). Water Environment Research, 2021, 93, 1044-1059.	1.3	18
9	Robust Nitritation Sustained by Acid-Tolerant Ammonia-Oxidizing Bacteria. Environmental Science & Envi	4.6	51
10	Towards more predictive clarification models via experimental determination of flocculent settling coefficient value. Water Research, 2021, 190, 116294.	5.3	8
11	The inhibitory impact of ammonia on thermally hydrolyzed sludge fed anaerobic digestion. Water Environment Research, 2021, 93, 1263-1275.	1.3	5
12	Stoichiometric and kinetic characterization of an acid-tolerant ammonia oxidizer â€~Candidatus Nitrosoglobus'. Water Research, 2021, 196, 117026.	5.3	22
13	Unravelling adaptation of nitrite-oxidizing bacteria in mainstream PN/A process: Mechanisms and counter-strategies. Water Research, 2021, 200, 117239.	5. 3	81
14	Recuperative thickening for sludge retention time and throughput management in anaerobic digestion with thermal hydrolysis pretreatment. Water Environment Research, 2020, 92, 465-477.	1.3	10
15	Exploring the impact of bulk and substrate physics on hydrolysis rates and biogas yields of anaerobic digesters pretreated with thermal hydrolysis. Water Environment Research, 2020, 92, 378-388.	1.3	0
16	Long solids retention times and attached growth phase favor prevalence of comammox bacteria in nitrogen removal systems. Water Research, 2020, 169, 115268.	5. 3	98
17	Effect of influent carbon fractionation and reactor configuration on mainstream nitrogen removal and NOB out-selection. Environmental Science: Water Research and Technology, 2020, 6, 691-701.	1.2	5
18	Increasing oxygen transfer efficiency through sorption enhancing strategies. Water Research, 2020, 183, 116086.	5.3	7

#	Article	IF	CITATIONS
19	Moving forward with A-stage and high-rate contact-stabilization for energy efficient water resource recovery facility: Mechanisms, factors, practical approach, and guidelines. Journal of Water Process Engineering, 2020, 36, 101329.	2.6	23
20	Screen <i>versus</i> cyclone for improved capacity and robustness for sidestream and mainstream deammonification. Environmental Science: Water Research and Technology, 2019, 5, 1769-1781.	1.2	13
21	Nitrate residual as a key parameter to efficiently control partial denitrification coupling with anammox. Water Environment Research, 2019, 91, 1455-1465.	1.3	46
22	Impacts of feed dilution and lower solids retention time on performance of thermal hydrolysis/anaerobic digestion. Water Environment Research, 2019, 91, 386-398.	1.3	5
23	Impact of carbon source and <scp>COD</scp> /N on the concurrent operation of partial denitrification and anammox. Water Environment Research, 2019, 91, 185-197.	1.3	78
24	Colloids, flocculation and carbon capture – a comprehensive plant-wide model. Water Science and Technology, 2019, 79, 15-25.	1.2	10
25	A-stage and high-rate contact-stabilization performance comparison for carbon and nutrient redirection from high-strength municipal wastewater. Chemical Engineering Journal, 2019, 357, 737-749.	6.6	48
26	Overcoming floc formation limitations in high-rate activated sludge systems. Chemosphere, 2019, 215, 342-352.	4.2	30
27	Short operational differences support granulation in a lab scale reactor in comparison to another conventional activated sludge reactor. Bioresource Technology, 2019, 271, 417-426.	4.8	18
28	Pinpointing wastewater and process parameters controlling the AOB to NOB activity ratio in sewage treatment plants. Water Research, 2018, 138, 37-46.	5.3	34
29	Supernatant organics from anaerobic digestion after thermal hydrolysis cause direct and/or diffusional activity loss for nitritation and anammox. Water Research, 2018, 143, 270-281.	5.3	67
30	Enhancing the decoupling of solids retention times in full-scale deammonification processes using screens. Proceedings of the Water Environment Federation, 2018, 2018, 185-191.	0.0	0
31	Nitrate-based COD Dosing Control for Partial Denitrification Selection Coupled to Anammox. Proceedings of the Water Environment Federation, 2018, 2018, 4678-4682.	0.0	1
32	How does THP fed anaerobic digester react to increased ammonia concentration?. Proceedings of the Water Environment Federation, 2018, 2018, 393-397.	0.0	0
33	Impact of Substrate Structure Changes Caused by Thermal Treatment on Hydrolysis Rate Within Anaerobic Digestion. Proceedings of the Water Environment Federation, 2018, 2018, 387-392.	0.0	0
34	Understanding mechanisms and sources of odors in resource recovery facilities: Impact of collection system, primary and secondary treatment. Proceedings of the Water Environment Federation, 2018, 2018, 546-553.	0.0	0
35	Towards more predictive clarification models via experimental determination of flocculent settling coefficient values. Proceedings of the Water Environment Federation, 2018, 2018, 4723-4728.	0.0	0
36	Standardization of the Limit of Stokesian Settling Measurement Using Simple Image Data Analysis (Manuscript). Proceedings of the Water Environment Federation, 2018, 2018, 5148-5176.	0.0	0

#	Article	IF	CITATIONS
37	Dual substrate limitation modeling and implications for mainstream deammonification. Water Research, 2017, 116, 95-105.	5.3	11
38	Reverse flexing as a physical/mechanical treatment to mitigate fouling of fine bubble diffusers. Water Science and Technology, 2017, 76, 1595-1602.	1.2	7
39	Assessment of the endogenous respiration rate and the observed biomass yield for methanol-fed denitrifying bacteria under anoxic and aerobic conditions. Water Science and Technology, 2017, 75, 48-56.	1.2	5
40	Methods for quantification of biosorption in high-rate activated sludge systems. Biochemical Engineering Journal, 2017, 128, 33-44.	1.8	22
41	Reply for comment on "Bioflocculation management through high-rate contact-stabilization: A promising technology to recover organic carbon from low-strength wastewater by Rahman, A., Meerburg, F. A., Ravadagundhi, S., Wett, B., Jimenez, J., Bott, C., Al-Omari, A., Riffat, R., Murthy, S. and De Clippeleir. H. [Water Research 104 (2016) 485–496]â€; Water Research. 2017. 126. 527-529.	5.3	1
42	Impact of aerobic famine and feast condition on extracellular polymeric substance production in high-rate contact stabilization systems. Chemical Engineering Journal, 2017, 328, 74-86.	6.6	31
43	Settling regimen transitions quantify solid separation limitations through correlation with floc size and shape. Water Research, 2017, 109, 54-68.	5.3	18
44	Novel Stokesian Metrics that Quantify Collision Efficiency, Floc Strength, and Discrete Settling Behavior. Water Environment Research, 2017, 89, 586-597.	1.3	11
45	Does operation at increased ammonia concentration impact hydrolysis rates. Proceedings of the Water Environment Federation, 2017, 2017, 60-63.	0.0	2
46	Potential of high-rate contact-stabilization for maximizing carbon redirection and capture compared to plug flow A-stage systems. Proceedings of the Water Environment Federation, 2017, 2017, 4269-4275.	0.0	0
47	The Role of Physics in the Hydrolysis Step of Mesophilic Anaerobic Digestion with Thermal Hydrolysis Pretreatment. Proceedings of the Water Environment Federation, 2017, 2017, 5626-5632.	0.0	0
48	Using dynamic alpha factors for oxygen transfer optimization in WRRFs. Proceedings of the Water Environment Federation, 2017, 2017, 298-303.	0.0	0
49	Selection of COD Source for Integration of Partial Denitrification Driven Final Polishing Step within Mainstream Short-cut Nitrogen Removal Systems. Proceedings of the Water Environment Federation, 2017, 2017, 592-596.	0.0	0
50	Fundamental Study on Dewatering Characteristics of Wastewater Sludge from Different Treatment Processes. Proceedings of the Water Environment Federation, 2017, 2017, 4466-4470.	0.0	0
51	Can We Overcome Hydrolysis Limitation by Better Understanding the Impacts of Physics Within Anaerobic Digestion?. Proceedings of the Water Environment Federation, 2017, 2017, 437-443.	0.0	0
52	Impact of carbon to nitrogen ratio and aeration regime on mainstream deammonification. Water Science and Technology, 2016, 74, 375-384.	1.2	61
53	Bioflocculation management through high-rate contact-stabilization: A promising technology to recover organic carbon from low-strength wastewater. Water Research, 2016, 104, 485-496.	5.3	88
54	Deammonification for digester supernatant pretreated with thermal hydrolysis: overcoming inhibition through process optimization. Applied Microbiology and Biotechnology, 2016, 100, 5595-5606.	1.7	37

#	Article	IF	CITATIONS
55	Limit of stokesian settling concentration characterizes sludge settling velocity. Water Research, 2016, 90, 100-110.	5.3	18
56	Impact of RAS Aeration on Bioflocculation and Carbon Redirection in High-Rate Activated Sludge Processes. Proceedings of the Water Environment Federation, 2016, 2016, 4261-4270.	0.0	1
57	"Accidental Granular Sludge?― Understanding process design and operational conditions that lead to low SVI-30 values through a survey of full scale facilities in North America. Proceedings of the Water Environment Federation, 2016, 2016, 3385-3394.	0.0	7
58	Practical Application of Novel Settling Characteristics Metrics to Localize Solids Separation Limitations Proceedings of the Water Environment Federation, 2016, 2016, 3318-3325.	0.0	1
59	Controlling ORP as the Key to Reduce Odor Emission in Secondary Systems. Proceedings of the Water Environment Federation, 2016, 2016, 4520-4529.	0.0	0
60	IMPORTANCE OF ANAEROBIC RESPEROMETRY FOR MODEL CALIBRATION AND PROCESS MONITORING. Proceedings of the Water Environment Federation, 2016, 2016, 2186-2193.	0.0	0
61	Strategy for Full-scale Transition into Shortcut Nitrogen Removal at Blue Plains Advanced Wastewater Treatment Plant Proceedings of the Water Environment Federation, 2016, 2016, 165-173.	0.0	0
62	Environmental sustainability of an energy self-sufficient sewage treatment plant: Improvements through DEMON and co-digestion. Water Research, 2015, 74, 166-179.	5.3	128
63	Model-based evaluation of mechanisms and benefits of mainstream shortcut nitrogen removal processes. Water Science and Technology, 2015, 71, 840-847.	1.2	33
64	High-rate activated sludge system for carbon management – Evaluation of crucial process mechanisms and design parameters. Water Research, 2015, 87, 476-482.	5.3	192
65	Nitric oxide preferentially inhibits nitrite oxidizing communities with high affinity for nitrite. Journal of Biotechnology, 2015, 193, 120-122.	1.9	24
66	Quantifying Flocculation Capacity of Activated Sludge Proceedings of the Water Environment Federation, 2015, 2015, 3466-3475.	0.0	1
67	Mechanical Cleaning/Treatment Method for Mitigating Membrane Diffuser Fouling and Improving Aeration Efficiency. Proceedings of the Water Environment Federation, 2015, 2015, 4078-4086.	0.0	0
68	Effect of biological process rate on fouling of fine-pore diffusers. Proceedings of the Water Environment Federation, 2015, 2015, 1860-1867.	0.0	0
69	A Novel Method for Quantifying the Solubilization Potential of Thermal Hydrolysis Processes. Proceedings of the Water Environment Federation, 2015, 2015, 6559-6568.	0.0	0
70	Efficient THP-AD Filtrate Treatment via Optimized Control Strategies in Sidestream Deammonification Reactor. Proceedings of the Water Environment Federation, 2015, 2015, 6538-6549.	0.0	1
71	Control of nitratation in an oxygen-limited autotrophic nitrification/denitrification rotating biological contactor through disc immersion level variation. Bioresource Technology, 2014, 155, 182-188.	4.8	35
72	Metrics for Settling of Flocculent and Granular Solids Proceedings of the Water Environment Federation, 2014, 2014, 839-846.	0.0	2

#	Article	IF	Citations
73	The Effect Of Sludge Age On Biokinetic Coefficients. Proceedings of the Water Environment Federation, 2014, 2014, 3794-3798.	0.0	1
74	Balancing Denitrification and Anammox Activities in Mainstream Deammonification: Influence of COD Input and Aeration Regime. Proceedings of the Water Environment Federation, 2014, 2014, 7433-7437.	0.0	0
75	From nitrite shunt to mainstream deammonification strategy: pilot-scale demonstration. Proceedings of the Water Environment Federation, 2014, 2014, 4244-4248.	0.0	2
76	One-stage partial nitritation/anammox at 15°C on pretreated sewage: feasibility demonstration at lab-scale. Applied Microbiology and Biotechnology, 2013, 97, 10199-10210.	1.7	168
77	Autotrophic nitrogen removal after ureolytic phosphate precipitation to remove both endogenous and exogenous nitrogen. Water Science and Technology, 2013, 67, 1425-1433.	1.2	4
78	Roadmap Toward Energy Neutrality & Demical Optimization at Enhanced Nutrient Removal Facilities. Proceedings of the Water Environment Federation, 2013, 2013, 702-731.	0.0	11
79	NOB out-selection in rotating biological contactors for sidestream and mainstream deammonification. Proceedings of the Water Environment Federation, 2013, 2013, 1948-1958.	0.0	1
80	Roadmap To Energy & Chemical Optimization Through The Use of Mainstream Deammonification at Enhanced Nutrient Removal Facilities. Proceedings of the Water Environment Federation, 2013, 2013, 2226-2249.	0.0	1
81	Efficient Total Nitrogen Removal in an Ammonia Gas Biofilter through High-Rate OLAND. Environmental Science & Technology, 2012, 46, 8826-8833.	4.6	20
82	Successful hydraulic strategies to start up OLAND sequencing batch reactors at lab scale. Microbial Biotechnology, 2012, 5, 403-414.	2.0	18
83	A high-rate ammonia gas biofilter based on partial nitritation/anammox removes total nitrogen at high efficiency. Communications in Agricultural and Applied Biological Sciences, 2012, 77, 157-61.	0.0	0
84	Improved start-up of OLAND sequencing batch reactors by means of hydraulic strategies. Communications in Agricultural and Applied Biological Sciences, 2012, 77, 231-5.	0.0	0
85	Floc-based sequential partial nitritation and anammox at full scale with contrasting N2O emissions. Water Research, 2011, 45, 2811-2821.	5.3	166
86	Long-chain acylhomoserine lactones increase the anoxic ammonium oxidation rate in an OLAND biofilm. Applied Microbiology and Biotechnology, 2011, 90, 1511-1519.	1.7	80
87	OLAND is feasible to treat sewage-like nitrogen concentrations at low hydraulic residence times. Applied Microbiology and Biotechnology, 2011, 90, 1537-1545.	1.7	98
88	Aggregate Size and Architecture Determine Microbial Activity Balance for One-Stage Partial Nitritation and Anammox. Applied and Environmental Microbiology, 2010, 76, 900-909.	1.4	318
89	A low volumetric exchange ratio allows high autotrophic nitrogen removal in a sequencing batch reactor. Bioresource Technology, 2009, 100, 5010-5015.	4.8	31
90	Media selection for anammoxâ€based polishing filters: balancing anammox enrichment and retention with filtration function. Water Environment Research, 0, , .	1.3	5