List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7439992/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Cost-Effectiveness of Intraoperative CT Scanning in Cochlear Implantation in Fee-for-Service and Bundled Payment Models. Ear, Nose and Throat Journal, 2022, 101, NP164-NP168.	0.8	2
2	Intraoperative Correction of Cochlear Implant Electrode Translocation. Audiology and Neuro-Otology, 2022, 27, 104-108.	1.3	2
3	Speech recognition as a function of the number of channels for Mid-Scala electrode array recipients. Journal of the Acoustical Society of America, 2022, 152, 67-79.	1.1	2
4	Eyes in Ears: A Miniature Steerable Digital Endoscope for Trans-Nasal Diagnosis of Middle Ear Disease. Annals of Biomedical Engineering, 2021, 49, 219-232.	2.5	12
5	Clinical Implementation of Second-generation Minimally Invasive Image-guided Cochlear Implantation Surgery. Otology and Neurotology, 2021, 42, 702-705.	1.3	8
6	A modular, multi-arm concentric tube robot system with application to transnasal surgery for orbital tumors. International Journal of Robotics Research, 2021, 40, 521-533.	8.5	29
7	Cerebellopontine Angle and Internal Auditory Canal Lipomas: Case Series and Systematic Review. Laryngoscope, 2021, 131, 2081-2087.	2.0	9
8	Speech recognition as a function of the number of channels for an array with large inter-electrode distances. Journal of the Acoustical Society of America, 2021, 149, 2752-2763.	1.1	10
9	Clinical Translation of an Insertion Tool for Minimally Invasive Cochlear Implant Surgery. Journal of Medical Devices, Transactions of the ASME, 2021, 15, 031001.	0.7	1
10	Resident Research Bootcamp: Preparatory Course for Required ACGME Research in O-HNS. Ear, Nose and Throat Journal, 2021, , 014556132110073.	0.8	0
11	Transeustachian Middle Ear Endoscopy Using a Steerable Distal-Camera Tipped Endoscope. Otology and Neurotology, 2021, Publish Ahead of Print, .	1.3	0
12	Cochlear Implantation and Electric Acoustic Stimulation in Children With TMPRSS3 Genetic Mutation. Otology and Neurotology, 2021, 42, 396-401.	1.3	17
13	Hearing Preservation Outcomes Using a Precurved Electrode Array Inserted With an External Sheath. Otology and Neurotology, 2020, 41, 33-38.	1.3	24
14	Use of intraoperative CT scanning for quality control assessment of cochlear implant electrode array placement*. Acta Oto-Laryngologica, 2020, 140, 206-211.	0.9	18
15	Robotic Ear Surgery. Otolaryngologic Clinics of North America, 2020, 53, 1065-1075.	1.1	9
16	Insertion Depth for Optimized Positioning of Precurved Cochlear Implant Electrodes. Otology and Neurotology, 2020, 41, 1066-1071.	1.3	7
17	Custom mastoid-fitting templates to improve cochlear implant electrode insertion trajectory. International Journal of Computer Assisted Radiology and Surgery, 2020, 15, 1713-1718.	2.8	2
18	Speech recognition with cochlear implants as a function of the number of channels: Effects of electrode placement. Journal of the Acoustical Society of America, 2020, 147, 3646-3656.	1.1	20

#	Article	IF	CITATIONS
19	Effect of Scala Tympani Height on Insertion Depth of Straight Cochlear Implant Electrodes. Otolaryngology - Head and Neck Surgery, 2020, 162, 718-724.	1.9	14
20	Magnetically Steered Robotic Insertion of Cochlear-Implant Electrode Arrays: System Integration and First-In-Cadaver Results. IEEE Robotics and Automation Letters, 2020, 5, 2240-2247.	5.1	32
21	Computational Optimization of Notch Spacing for a Transnasal Ear Endoscopy Continuum Robot. , 2020, , .		6
22	Preoperative prediction of angular insertion depth of lateral wall cochlear implant electrode arrays. Journal of Medical Imaging, 2020, 7, 1.	1.5	5
23	Speech recognition as a function of the number of channels in perimodiolar electrode recipients. Journal of the Acoustical Society of America, 2019, 145, 1556-1564.	1.1	45
24	Intracochlear Electrocochleography: Influence of Scalar Position of the Cochlear Implant Electrode on Postinsertion Results. Otology and Neurotology, 2019, 40, e503-e510.	1.3	27
25	Further Evidence of the Relationship Between Cochlear Implant Electrode Positioning and Hearing Outcomes. Otology and Neurotology, 2019, 40, 617-624.	1.3	97
26	Matched Cohort Comparison Indicates Superiority of Precurved Electrode Arrays. Otology and Neurotology, 2019, 40, 1160-1166.	1.3	32
27	Automatic graph-based method for localization of cochlear implant electrode arrays in clinical CT with sub-voxel accuracy. Medical Image Analysis, 2019, 52, 1-12.	11.6	30
28	A Simple Manual Roller Wheel Insertion Tool for Electrode Array Insertion in Minimally Invasive Cochlear Implant Surgery. , 2019, , .		1
29	Erythrocyte folate, serum vitamin B12, and hearing loss in the 2003-2004 National Health And Nutrition Examination Survey (NHANES). European Journal of Clinical Nutrition, 2018, 72, 720-727.	2.9	12
30	The influence of the subarcuate artery in the superior semicircular canal dehiscence and its frequency on stillbirths: illustrative cases and systematic review. Acta Oto-Laryngologica, 2018, 138, 437-442.	0.9	1
31	Predictive factors for short―and longâ€ŧerm hearing preservation in cochlear implantation with conventionalâ€ŧength electrodes. Laryngoscope, 2018, 128, 482-489.	2.0	75
32	Automatic localization of closely spaced cochlear implant electrode arrays in clinical CTs. Medical Physics, 2018, 45, 5030-5040.	3.0	21
33	Automatic Classification of Cochlear Implant Electrode Cavity Positioning. Lecture Notes in Computer Science, 2018, 11073, 47-54.	1.3	1
34	Endoscopic Ear Surgery Skills Training Improves Medical Student Performance. Journal of Surgical Education, 2018, 75, 1480-1485.	2.5	6
35	Prevalence of Extracochlear Electrodes: Computerized Tomography Scans, Cochlear Implant Maps, and Operative Reports. Otology and Neurotology, 2018, 39, e325-e331.	1.3	23
36	Evaluation of the Facial Recess and Cochlea on the Temporal Bone of Stillbirths regarding the Percutaneous Cochlear Implant. International Archives of Otorhinolaryngology, 2018, 22, 260-265.	0.8	1

#	Article	IF	CITATIONS
37	Preliminary Results With Image-guided Cochlear Implant Insertion Techniques. Otology and Neurotology, 2018, 39, 922-928.	1.3	30
38	The Relationship Between Spectral Modulation Detection and Speech Recognition: Adult Versus Pediatric Cochlear Implant Recipients. Trends in Hearing, 2018, 22, 233121651877117.	1.3	47
39	Validation of automatic cochlear implant electrode localization techniques using μCTs. Journal of Medical Imaging, 2018, 5, 1.	1.5	9
40	Validation of cochlear implant electrode localization techniques. , 2018, , .		1
41	Through the Eustachian Tube and Beyond: A New Miniature Robotic Endoscope to See Into the Middle Ear. IEEE Robotics and Automation Letters, 2017, 2, 1488-1494.	5.1	34
42	Resection planning for robotic acoustic neuroma surgery. Journal of Medical Imaging, 2017, 4, 025002.	1.5	3
43	Human Kinematics of Cochlear Implant Surgery: An Investigation of Insertion Microâ€Motions and Speed Limitations. Otolaryngology - Head and Neck Surgery, 2017, 157, 493-498.	1.9	22
44	Pre-operative Screening and Manual Drilling Strategies to Reduce the Risk of Thermal Injury During Minimally Invasive Cochlear Implantation Surgery. Annals of Biomedical Engineering, 2017, 45, 2184-2195.	2.5	4
45	Retrospective Evaluation of a Technique for Patient-Customized Placement of Precurved Cochlear Implant Electrode Arrays. Otolaryngology - Head and Neck Surgery, 2017, 157, 107-112.	1.9	21
46	Implementation of Image-Guided Cochlear Implant Programming at a Distant Site. Otolaryngology - Head and Neck Surgery, 2017, 156, 933-937.	1.9	4
47	Tip Fold-over in Cochlear Implantation: Case Series. Otology and Neurotology, 2017, 38, 199-206.	1.3	83
48	Safety margins in robotic bone milling: from registration uncertainty to statistically safe surgeries. International Journal of Medical Robotics and Computer Assisted Surgery, 2017, 13, e1773.	2.3	7
49	NIH Funding within Otolaryngology: 2005â€⊋014. Otolaryngology - Head and Neck Surgery, 2017, 157, 774-780.	1.9	12
50	Cochlear implant phantom for evaluating computed tomography acquisition parameters. Journal of Medical Imaging, 2017, 4, 1.	1.5	2
51	Making robots mill bone more like human surgeons: Using bone density and anatomic information to mill safely and efficiently. , 2016, 2016, 1837-1843.		12
52	Design and Thermal Testing of an Automatic Drill Guide for Less Invasive Cochlear Implantation1. Journal of Medical Devices, Transactions of the ASME, 2016, 10, .	0.7	1
53	Durability of Hearing Preservation after Cochlear Implantation with Conventionalâ€Length Electrodes and Scala Tympani Insertion. Otolaryngology - Head and Neck Surgery, 2016, 154, 907-913. 	1.9	24
54	Initial Results With Image-guided Cochlear Implant Programming in Children. Otology and Neurotology, 2016, 37, e63-e69.	1.3	56

#	Article	IF	CITATIONS
55	Accuracy of linear drilling in temporal bone using drill press system for minimally invasive cochlear implantation. International Journal of Computer Assisted Radiology and Surgery, 2016, 11, 483-493.	2.8	3
56	A Compact, Bone-Attached Robot for Mastoidectomy. Journal of Medical Devices, Transactions of the ASME, 2015, 9, 0310031-310037.	0.7	24
57	Image-guided customization of frequency-place mapping in cochlear implants. , 2015, , .		6
58	Availability of Binaural Cues for Pediatric Bilateral Cochlear Implant Recipients. Journal of the American Academy of Audiology, 2015, 26, 289-298.	0.7	14
59	Simulation of trans-nasal endoscopy of the middle ear for visualization of cholesteatoma. , 2015, , .		3
60	Impact of electrode design and surgical approach on scalar location and cochlear implant outcomes. Laryngoscope, 2014, 124, S1-7.	2.0	239
61	An artifact-robust, shape library-based algorithm for automatic segmentation of inner ear anatomy in post-cochlear-implantation CT. , 2014, 9034, 90342V.		19
62	Minimally invasive imageâ€guided cochlear implantation surgery: First report of clinical implementation. Laryngoscope, 2014, 124, 1915-1922.	2.0	98
63	Clinical Evaluation of an Image-Guided Cochlear Implant Programming Strategy. Audiology and Neuro-Otology, 2014, 19, 400-411.	1.3	112
64	Preliminary testing of a compact bone-attached robot for otologic surgery. , 2014, 9036, 903614.		8
65	Automatic segmentation of intra-cochlear anatomy in post-implantation CT of unilateral cochlear implant recipients. Medical Image Analysis, 2014, 18, 605-615.	11.6	41
66	Automatic Localization of Cochlear Implant Electrodes in CT. Lecture Notes in Computer Science, 2014, 17, 331-338.	1.3	44
67	Image-Guidance Enables New Methods for Customizing Cochlear Implant Stimulation Strategies. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2013, 21, 820-829.	4.9	129
68	Analysis of Intersubject Variations in Intracochlear and Middle Ear Surface Anatomy for Cochlear Implantation. Otology and Neurotology, 2013, 34, 1675-1680.	1.3	15
69	Assessment of Electrode Placement and Audiological Outcomes in Bilateral Cochlear Implantation. Otology and Neurotology, 2011, 32, 428-432.	1.3	60
70	Automatic Segmentation of Intracochlear Anatomy in Conventional CT. IEEE Transactions on Biomedical Engineering, 2011, 58, 2625-2632.	4.2	145
71	Automatic identification of cochlear implant electrode arrays for post-operative assessment. Proceedings of SPIE, 2011, 7962, .	0.8	21
72	Can Otolaryngology Compete with Larger Fields Regarding Impact Factor?. Otolaryngology - Head and Neck Surgery, 2011, 145, 15-17.	1.9	1

#	Article	IF	CITATIONS
73	Clinical Validation Study of Percutaneous Cochlear Access Using Patient-Customized Microstereotactic Frames. Otology and Neurotology, 2010, 31, 94-99.	1.3	71
74	Electroconvulsive Therapy in a Cochlear Implant Patient. Otology and Neurotology, 2010, 31, 64-66.	1.3	12
75	Design of a Novel Device to Provide Assured Seating of Bone Implanted Fiducial Markers. Journal of Medical Devices, Transactions of the ASME, 2010, 4, .	0.7	3
76	Percutaneous access to the petrous apex in vitro using customized micro-stereotactic frames based on image-guided surgical technology. Acta Oto-Laryngologica, 2010, 130, 458-463.	0.9	12
77	Customized, rapid-production microstereotactic table for surgical targeting: description of concept and in vitro validation. International Journal of Computer Assisted Radiology and Surgery, 2009, 4, 273-280.	2.8	85
78	Image-Guided Technique in Neurotology. Otolaryngologic Clinics of North America, 2007, 40, 611-624.	1.1	30
79	Image-guided surgery: what is the accuracy?. Current Opinion in Otolaryngology and Head and Neck Surgery, 2005, 13, 27-31.	1.8	95
80	Minimally Invasive, Image-Guided, Facial-Recess Approach to the Middle Ear: Demonstration of the Concept of Percutaneous Cochlear Access In Vitro. Otology and Neurotology, 2005, 26, 557-562.	1.3	63
81	In vitro assessment of imageâ€guided otologic surgery: Submillimeter accuracy within the region of the temporal bone. Otolaryngology - Head and Neck Surgery, 2005, 132, 435-442.	1.9	54
82	Submillimetric target-registration error using a novel, non-invasive fiducial system for image-guided otologic surgery. Computer Aided Surgery, 2004, 9, 145-153.	1.8	35
83	A Step Towards Characterization of Surgical Actions Involved in Mastoidectomy. Advances in Bioinformatics and Biomedical Engineering Book Series. 0 100-121.	0.4	0