
Marc EscribÃ

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7439640/publications.pdf Version: 2024-02-01

MARC ESCRIBÃ

#	Article	IF	CITATIONS
1	Zero waste, single step methods of fabrication of reduced graphene oxide decorated with gold nanoparticles. Sustainable Materials and Technologies, 2022, 31, e00387.	1.7	1
2	Sustainability of green solvents – review and perspective. Green Chemistry, 2022, 24, 410-437.	4.6	95
3	Survey of Synthesis Processes for N-Doped Carbon Dots Assessed by Green Chemistry and Circular and EcoScale Metrics. ACS Sustainable Chemistry and Engineering, 2021, 9, 4755-4770.	3.2	14
4	Quantitative Sustainability Assessment of Flow Chemistry–From Simple Metrics to Holistic Assessment. ACS Sustainable Chemistry and Engineering, 2021, 9, 9508-9540.	3.2	38
5	Automated High-Pressure Atline Analysis of Photo-High-P,T Vitamin D3 Microfluidic Synthesis. Frontiers in Chemical Engineering, 2021, 3, .	1.3	0
6	Enzymatic pretreatment of recycled grease trap waste in batch and continuous-flow reactors for biodiesel production. Chemical Engineering Journal, 2021, 426, 131703.	6.6	9
7	Microfluidic encapsulation for controlled release and its potential for nanofertilisers. Chemical Society Reviews, 2021, 50, 11979-12012.	18.7	17
8	Circular Economy Metrics for the Photo-High-p,T Continuous Multistep Synthesis of Vitamin D ₃ . ACS Sustainable Chemistry and Engineering, 2021, 9, 1867-1879.	3.2	11
9	6 From green chemistry principles to sustainable flow chemistry. , 2021, , 159-192.		1
10	Life cycle assessment and cost evaluation of emerging technologies at early stages: The case of continuous flow synthesis of Rufinamide. Journal of Advanced Manufacturing and Processing, 2020, 2, .	1.4	15
11	Multistep Solvent-Free 3 m ² Footprint Pilot Miniplant for the Synthesis of Annual Half-Ton Rufinamide Precursor. ACS Sustainable Chemistry and Engineering, 2019, 7, 17237-17251.	3.2	13
12	Life cycle assessment of vitamin D3 synthesis: from batch to photo-high p,T. International Journal of Life Cycle Assessment, 2019, 24, 2111-2127.	2.2	15
13	Quality-In(Process)Line (QuIProLi) process intensification for a micro-flow UV-photo synthesis enabled by online UHPLC analysis. Tetrahedron, 2018, 74, 3143-3151.	1.0	13
14	Continuous-Flow In-Line Solvent-Swap Crystallization of Vitamin D ₃ . Organic Process Research and Development, 2018, 22, 178-189.	1.3	12
15	Microflow High-p,T Intensification of Vitamin D ₃ Synthesis Using an Ultraviolet Lamp. Organic Process Research and Development, 2018, 22, 147-155.	1.3	21
16	Laserâ€Mediated Photoâ€Highâ€p,T Intensification of Vitamin D ₃ Synthesis in Continuous Flow. ChemPhotoChem, 2018, 2, 922-930.	1.5	9
17	Industrial Photochemistry: From Laboratory Scale to Industrial Scale. , 2017, , 245-267.		8
18	Ionic compounds derived from crude glycerol: Thermal energy storage capability evaluation. Renewable Energy, 2017, 114, 629-637.	4.3	9

Marc EscribÃ

#	Article	IF	CITATIONS
19	Effect of Acetonitrileâ€Based Crystallization Conditions on the Crystal Quality ofÂVitaminÂD ₃ . Chemical Engineering and Technology, 2017, 40, 2016-2024.	0.9	5
20	Development of an Integrated Continuous Crystallization Process of Vitamin D3. Chemie-Ingenieur-Technik, 2016, 88, 1213-1213.	0.4	1
21	Green chemistry strategies for drug discovery. Green Processing and Synthesis, 2015, 4, .	1.3	0
22	Recent Developments in Catalytic Micro Process Engineering for Fine Chemicals Synthesis. Recent Patents on Catalysis, 2014, 2, 101-115.	0.2	3
23	H3PO4/metal halide induces a one-pot solvent-free esterification–halogenation of glycerol and diols. RSC Advances, 2013, 3, 8805.	1.7	4
24	Applying a continuous capillary-based process to the synthesis of 3-chloro-2-hydroxypropyl pivaloate. Green Chemistry, 2011, 13, 1799.	4.6	16
25	From Symmetric Glycerol Derivatives to Dissymmetric Chlorohydrins. Molecules, 2011, 16, 2065-2074.	1.7	7
26	Use of Crude Glycerol from Biodiesel Producers and Fatty Materials to Prepare Allyl Esters. Waste and Biomass Valorization, 2011, 2, 285-290.	1.8	16
27	A tandem Finkelstein-rearrangement–elimination reaction: a straightforward synthetic route to allyl esters. Tetrahedron, 2009, 65, 4866-4870.	1.0	15
28	From glycerol to chlorohydrin esters using a solvent-free system. Microwave irradiation versus conventional heating. Tetrahedron, 2009, 65, 10370-10376.	1.0	17
29	Combining AlCl3·6H2O and an ionic liquid to prepare chlorohydrin esters from glycerol. Tetrahedron Letters, 2009, 50, 2828-2830.	0.7	13
30	Synthesis of Allyl Esters of Fatty Acids and Their Ovicidal Effect on Cydia pomonella (L.). Journal of Agricultural and Food Chemistry, 2009, 57, 4849-4853.	2.4	18