Shirish Shenolikar

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7439589/publications.pdf Version: 2024-02-01

SHIDISH SHENOLIKAD

#	Article	IF	CITATIONS
1	PromISR-6, a Guanabenz Analogue, Improves Cellular Survival in an Experimental Model of Huntington's Disease. ACS Chemical Neuroscience, 2019, 10, 3575-3589.	3.5	8
2	Oxidative stress promotes SIRT1 recruitment to the GADD34/PP1 \hat{l} ± complex to activate its deacetylase function. Cell Death and Differentiation, 2018, 25, 255-267.	11.2	35
3	Chronic oxidative stress promotes GADD34-mediated phosphorylation of the TAR DNA-binding protein TDP-43, a modification linked to neurodegeneration. Journal of Biological Chemistry, 2018, 293, 163-176.	3.4	32
4	Protein Phosphatase 1α and Cofilin Regulate Nuclear Translocation of NF-κB and Promote Expression of the Anti-Inflammatory Cytokine Interleukin-10 by T Cells. Molecular and Cellular Biology, 2018, 38, .	2.3	9
5	Protein Serine/Threonine Phosphatases: Keys to Unlocking Regulators and Substrates. Annual Review of Biochemistry, 2018, 87, 921-964.	11.1	130
6	Translating protein phosphatase research into treatments for neurodegenerative diseases. Biochemical Society Transactions, 2017, 45, 101-112.	3.4	5
7	Complementary Roles of GADD34- and CReP-Containing Eukaryotic Initiation Factor 2α Phosphatases during the Unfolded Protein Response. Molecular and Cellular Biology, 2016, 36, 1868-1880.	2.3	39
8	Structural and Functional Analysis of the GADD34:PP1 eIF2α Phosphatase. Cell Reports, 2015, 11, 1885-1891.	6.4	107
9	Simple and inexpensive ribosome profiling analysis of mRNA translation. Methods, 2015, 91, 69-74.	3.8	45
10	The Unfolded Protein Response Triggers Selective mRNA Release from the Endoplasmic Reticulum. Cell, 2014, 158, 1362-1374.	28.9	106
11	Targeting Phosphorylation of Eukaryotic Initiation Factor-2α to Treat Human Disease. Progress in Molecular Biology and Translational Science, 2012, 106, 75-106.	1.7	36
12	Association with Endoplasmic Reticulum Promotes Proteasomal Degradation of GADD34 Protein. Journal of Biological Chemistry, 2011, 286, 21687-21696.	3.4	32
13	Next-Generation Sequencing of Apoptotic DNA Breakpoints Reveals Association with Actively Transcribed Genes and Gene Translocations. PLoS ONE, 2011, 6, e26054.	2.5	11
14	Control of Cellular GADD34 Levels by the 26S Proteasome. Molecular and Cellular Biology, 2008, 28, 6989-7000.	2.3	68
15	Growth Arrest and DNA Damage-Inducible Protein GADD34 Targets Protein Phosphatase 1α to the Endoplasmic Reticulum and Promotes Dephosphorylation of the α Subunit of Eukaryotic Translation Initiation Factor 2. Molecular and Cellular Biology, 2003, 23, 1292-1303.	2.3	344
16	Differential renal distribution of NHERF isoforms and their colocalization with NHE3, ezrin, and ROMK. American Journal of Physiology - Cell Physiology, 2001, 280, C192-C198.	4.6	127
17	Growth Arrest and DNA Damage-Inducible Protein GADD34 Assembles a Novel Signaling Complex Containing Protein Phosphatase 1 and Inhibitor 1. Molecular and Cellular Biology, 2001, 21, 6841-6850.	2.3	247
18	Signal complex regulation of renal transport proteins: NHERF and regulation of NHE3 by PKA. American Journal of Physiology - Renal Physiology, 2000, 279, F393-F399.	2.7	87