Mohamed Barakat

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7439585/publications.pdf Version: 2024-02-01

MOHAMED BADAKAT

#	Article	IF	CITATIONS
1	Discovery and characterization of UipA, a uranium- and iron-binding PepSY protein involved in uranium tolerance by soil bacteria. ISME Journal, 2022, 16, 705-716.	4.4	13
2	Contrasted microbial community colonization of a bauxite residue deposit marked by a complex geochemical context. Journal of Hazardous Materials, 2022, 424, 127470.	6.5	18
3	Bacterial diversity and community structure in the rhizosphere of the halophyte Halocnemum strobilaceum in an Algerian arid saline soil. Extremophiles, 2022, 26, .	0.9	3
4	Oxygen-reducing microbial cathodes in hypersaline electrolyte. Bioresource Technology, 2021, 319, 124165.	4.8	2
5	Pearl millet genotype impacts microbial diversity and enzymatic activities in relation to root-adhering soil aggregation. Plant and Soil, 2021, 464, 109.	1.8	22
6	Effects of the Denitrification Inhibitor "Procyanidins―on the Diversity, Interactions, and Potential Functions of Rhizosphere-Associated Microbiome. Microorganisms, 2021, 9, 1406.	1.6	4
7	Evolutionary history expands the range of signaling interactions in hybrid multikinase networks. Scientific Reports, 2021, 11, 11763.	1.6	3
8	Hypersaline microbial fuel cell equipped with an oxygen-reducing microbial cathode. Bioresource Technology, 2021, 337, 125448.	4.8	7
9	Metataxonomics of Tunisian phosphogypsum based on five bioinformatics pipelines: Insights for bioremediation. Genomics, 2020, 112, 981-989.	1.3	18
10	An insight into the genome of extensively drug-resistant and uropathogenic Citrobacter werkmanii. Journal of Global Antimicrobial Resistance, 2020, 22, 785-791.	0.9	4
11	A MORC-driven transcriptional switch controls Toxoplasma developmental trajectories and sexual commitment. Nature Microbiology, 2020, 5, 570-583.	5.9	78
12	Who is eating fructose within the <scp><i>Aedes albopictus</i></scp> gut microbiota?. Environmental Microbiology, 2020, 22, 1193-1206.	1.8	22
13	Phytobeneficial bacteria improve saline stress tolerance in Vicia faba and modulate microbial interaction network. Science of the Total Environment, 2020, 729, 139020.	3.9	36
14	Plant hosts control microbial denitrification activity. FEMS Microbiology Ecology, 2019, 95, .	1.3	30
15	Light on the cell cycle of the non-photosynthetic bacterium Ramlibacter tataouinensis. Scientific Reports, 2019, 9, 16505.	1.6	8
16	Complete Genome Sequences of Four <i>Microbacterium</i> Strains Isolated from Metal- and Radionuclide-Rich Soils. Microbiology Resource Announcements, 2019, 8, .	0.3	3
17	Proteogenomic insights into uranium tolerance of a Chernobyl's Microbacterium bacterial isolate. Journal of Proteomics, 2018, 177, 148-157.	1.2	43
18	Geometagenomics illuminates the impact of agriculture on the distribution and prevalence of plant viruses at the ecosystem scale. ISME Journal, 2018, 12, 173-184.	4.4	132

Mohamed Barakat

#	Article	IF	CITATIONS
19	Sequencing, <i>De Novo</i> Assembly, and Annotation of the Complete Genome of a New Thraustochytrid Species, Strain CCAP_4062/3. Genome Announcements, 2018, 6, .	0.8	17
20	Proteomics data for characterizing Microbacterium oleivorans A9, an uranium-tolerant actinobacterium isolated near the Chernobyl nuclear power plant. Data in Brief, 2018, 21, 1125-1129.	0.5	3
21	Plant Nutrient Resource Use Strategies Shape Active Rhizosphere Microbiota Through Root Exudation. Frontiers in Plant Science, 2018, 9, 1662.	1.7	67
22	Two New Secreted Proteases Generate a Casein-Derived Antimicrobial Peptide in Bacillus cereus Food Born Isolate Leading to Bacterial Competition in Milk. Frontiers in Microbiology, 2018, 9, 1148.	1.5	29
23	Different methods used to form oxygen reducing biocathodes lead to different biomass quantities, bacterial communities, and electrochemical kinetics. Bioelectrochemistry, 2017, 116, 24-32.	2.4	22
24	Draft Genome Sequence of Microbacterium oleivorans Strain A9, a Bacterium Isolated from Chernobyl Radionuclide-Contaminated Soil. Genome Announcements, 2017, 5, .	0.8	6
25	Soil prokaryotic communities in Chernobyl waste disposal trench T22 are modulated by organic matter and radionuclide contamination. FEMS Microbiology Ecology, 2017, 93, .	1.3	20
26	Evidence that Soil Properties and Organic Coating Drive the Phytoavailability of Cerium Oxide Nanoparticles. Environmental Science & amp; Technology, 2017, 51, 9756-9764.	4.6	49
27	Pearl Millet Genetic Traits Shape Rhizobacterial Diversity and Modulate Rhizosphere Aggregation. Frontiers in Plant Science, 2017, 8, 1288.	1.7	23
28	Modifications at K31 on the lateral surface of histone H4 contribute to genome structure and expression in apicomplexan parasites. ELife, 2017, 6, .	2.8	29
29	Bacterial Adaptation to Hot and Dry Deserts. , 2017, , 75-98.		8
30	Design Defines the Effects of Nanoceria at a Low Dose on Soil Microbiota and the Potentiation of Impacts by the Canola Plant. Environmental Science & Technology, 2016, 50, 6892-6901.	4.6	30
31	Isolation and identification of <i>Pseudomonas syringae</i> facilitated by a PCR targeting the whole <i>P. syringae</i> group. FEMS Microbiology Ecology, 2016, 92, fiv146.	1.3	28
32	Microbiote shift in the Medicago sativa rhizosphere in response to cyanotoxins extract exposure. Science of the Total Environment, 2016, 539, 135-142.	3.9	37
33	P2CS: updates of the prokaryotic two-component systems database. Nucleic Acids Research, 2015, 43, D536-D541.	6.5	90
34	Forming microbial anodes with acetate addition decreases their capability to treat raw paper mill effluent. Bioresource Technology, 2014, 164, 285-291.	4.8	10
35	Transformation of Pristine and Citrate-Functionalized CeO ₂ Nanoparticles in a Laboratory-Scale Activated Sludge Reactor. Environmental Science & Technology, 2014, 48, 7289-7296.	4.6	61
36	An adaptable mesocosm platform for performing integrated assessments of nanomaterial risk in complex environmental systems. Scientific Reports, 2014, 4, 5608.	1.6	45

Mohamed Barakat

#	Article	IF	CITATIONS
37	P2RP: a web-based framework for the identification and analysis of regulatory proteins in prokaryotic genomes. BMC Genomics, 2013, 14, 269.	1.2	69
38	Host Cell Subversion by Toxoplasma GRA16, an Exported Dense Granule Protein that Targets the Host Cell Nucleus and Alters Gene Expression. Cell Host and Microbe, 2013, 13, 489-500.	5.1	209
39	Reversible oxygenâ€ŧolerant hydrogenase carried by freeâ€iving N ₂ â€fixing bacteria isolated from the rhizospheres of rice, maize, and wheat. MicrobiologyOpen, 2012, 1, 349-361.	1.2	5
40	Bacterial adaptation to hot and dry deserts. , 2012, , 69-85.		6
41	P2TF: a comprehensive resource for analysis of prokaryotic transcription factors. BMC Genomics, 2012, 13, 628.	1.2	52
42	P2CS: a database of prokaryotic two-component systems. Nucleic Acids Research, 2011, 39, D771-D776.	6.5	84
43	Complete Genome Sequence of a Beneficial Plant Root-Associated Bacterium, Pseudomonas brassicacearum. Journal of Bacteriology, 2011, 193, 3146-3146.	1.0	48
44	The Cyst-Dividing Bacterium Ramlibacter tataouinensis TTB310 Genome Reveals a Well-Stocked Toolbox for Adaptation to a Desert Environment. PLoS ONE, 2011, 6, e23784.	1.1	47
45	Structure, Function, and Evolution of the Thiomonas spp. Genome. PLoS Genetics, 2010, 6, e1000859.	1.5	123
46	A Complex Small RNA Repertoire Is Generated by a Plant/Fungal-Like Machinery and Effected by a Metazoan-Like Argonaute in the Single-Cell Human Parasite Toxoplasma gondii. PLoS Pathogens, 2010, 6, e1000920.	2.1	113
47	Proteomics-based Refinement of Deinococcus deserti Genome Annotation Reveals an Unwonted Use of Non-canonical Translation Initiation Codons. Molecular and Cellular Proteomics, 2010, 9, 415-426.	2.5	90
48	Mineral and Bacterial Diversities of Desert Sand Grains from South-East Morocco. Geomicrobiology Journal, 2010, 27, 76-92.	1.0	27
49	Alliance of Proteomics and Genomics to Unravel the Specificities of Sahara Bacterium Deinococcus deserti. PLoS Genetics, 2009, 5, e1000434.	1.5	144
50	P2CS: a two-component system resource for prokaryotic signal transduction research. BMC Genomics, 2009, 10, 315.	1.2	60
51	A Tale of Two Oxidation States: Bacterial Colonization of Arsenic-Rich Environments. PLoS Genetics, 2007, 3, e53.	1.5	166
52	The desert of Tataouine: an extreme environment that hosts a wide diversity of microorganisms and radiotolerant bacteria. Environmental Microbiology, 2006, 8, 514-525.	1.8	192
53	Isolation and identification of an EPS-producing Rhizobium strain from arid soil (Algeria): characterization of its EPS and the effect of inoculation on wheat rhizosphere soil structure. Research in Microbiology, 2005, 156, 522-531.	1.0	124
54	A morphological transition in the pleomorphic bacterium Ramlibacter tataouinensis TTB310. Research in Microbiology, 2005, 156, 1026-1030.	1.0	15

#	Article	IF	CITATIONS
55	Experimental Colonization and Alteration of Orthopyroxene by the Pleomorphic BacteriaRamlibacter tataouinensis. Geomicrobiology Journal, 2004, 21, 341-349.	1.0	34
56	Biologically controlled precipitation of calcium phosphate by Ramlibacter tataouinensis. Earth and Planetary Science Letters, 2004, 228, 439-449.	1.8	93
57	Ramlibacter tataouinensis gen. nov., sp. nov., and Ramlibacter henchirensis sp. nov., cyst-producing bacteria isolated from subdesert soil in Tunisia. International Journal of Systematic and Evolutionary Microbiology, 2003, 53, 589-594.	0.8	93
58	Burkholderia caribensis sp. nov., an exopolysaccharide-producing bacterium isolated from vertisol microaggregates in Martinique. International Journal of Systematic and Evolutionary Microbiology, 1999, 49, 787-794.	0.8	101