
List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7439178/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Structure of a spatially developing turbulent lean methane–air Bunsen flame. Proceedings of the Combustion Institute, 2007, 31, 1291-1298.	3.9	329
2	Direct numerical simulation of hydrogen-enriched lean premixed methane–air flames. Combustion and Flame, 2004, 138, 242-258.	5.2	246
3	Scalar mixing in direct numerical simulations of temporally evolving plane jet flames with skeletal CO/H2 kinetics. Proceedings of the Combustion Institute, 2007, 31, 1633-1640.	3.9	192
4	Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities. Combustion and Flame, 2006, 145, 128-144.	5.2	189
5	Turbulent flame–wall interaction: a direct numerical simulation study. Journal of Fluid Mechanics, 2010, 658, 5-32.	3.4	181
6	A flame surface density approach to large-eddy simulation of premixed turbulent combustion. Proceedings of the Combustion Institute, 2000, 28, 51-58.	3.9	177
7	The effects of non-uniform temperature distribution on the ignition of a lean homogeneous hydrogen–air mixture. Proceedings of the Combustion Institute, 2005, 30, 875-882.	3.9	157
8	Implications of a flame surface density approach to large eddy simulation of premixed turbulent combustion. Combustion and Flame, 2001, 126, 1617-1629.	5.2	149
9	A petascale direct numerical simulation study of the modelling of flame wrinkling for large-eddy simulations in intense turbulence. Combustion and Flame, 2012, 159, 2690-2703.	5.2	145
10	Spectral splitting strategy and optical model for the development of a concentrating hybrid PV/T collector. Applied Energy, 2015, 141, 238-246.	10.1	119
11	Modelling n-dodecane spray and combustion with the transported probability density function method. Combustion and Flame, 2015, 162, 2006-2019.	5.2	118
12	Premixed flames subjected to extreme turbulence: Some questions and recent answers. Progress in Energy and Combustion Science, 2020, 76, 100802.	31.2	118
13	Direct numerical simulation of ignition front propagation in a constant volume with temperature inhomogeneities. Combustion and Flame, 2006, 145, 145-159.	5.2	115
14	Comparison of direct numerical simulation of lean premixed methane–air flames with strained laminar flame calculations. Combustion and Flame, 2006, 144, 112-125.	5.2	114
15	Direct numerical simulations of a high Karlovitz number laboratory premixed jet flame – an analysis of flame stretch and flame thickening. Journal of Fluid Mechanics, 2017, 815, 511-536.	3.4	114
16	Feasibility of nanofluid-based optical filters. Applied Optics, 2013, 52, 1413.	1.8	108
17	Ethanol utilisation in a diesel engine using dual-fuelling technology. Fuel, 2013, 109, 597-607.	6.4	105
18	The structure and propagation of laminar flames under autoignitive conditions. Combustion and	5.2	90

Flame, 2018, 188, 399-411.

#	Article	IF	CITATIONS
19	Direct numerical simulation of turbulent combustion: fundamental insights towards predictive models. Journal of Physics: Conference Series, 2005, 16, 65-79.	0.4	88
20	Transported probability density function modelling of the vapour phase of an n-heptane jet at diesel engine conditions. Proceedings of the Combustion Institute, 2013, 34, 3039-3047.	3.9	88
21	An analysis of the structure of an n-dodecane spray flame using TPDF modelling. Combustion and Flame, 2016, 168, 420-435.	5.2	82
22	The effects of strain rate and curvature on surface density function transport in turbulent premixed methane–air and hydrogen–air flames: A comparative study. Combustion and Flame, 2008, 154, 259-280.	5.2	81
23	A comparison between direct numerical simulation and experiment of the turbulent burning velocity-related statistics in a turbulent methane-air premixed jet flame at high Karlovitz number. Proceedings of the Combustion Institute, 2017, 36, 2045-2053.	3.9	80
24	Large eddy simulation of extinction and reignition with artificial neural networks based chemical kinetics. Combustion and Flame, 2010, 157, 566-578.	5.2	77
25	Experimental testing of SiN x /SiO 2 thin film filters for a concentrating solar hybrid PV/T collector. Renewable Energy, 2014, 72, 79-87.	8.9	77
26	Response of flame thickness and propagation speed under intense turbulence in spatially developing lean premixed methane–air jet flames. Combustion and Flame, 2015, 162, 3294-3306.	5.2	72
27	A Comprehensive Study of Effects of Mixing and Chemical Kinetic Models on Predictions of n-heptane Jet Ignitions with the PDF Method. Flow, Turbulence and Combustion, 2013, 91, 249-280.	2.6	70
28	A direct numerical simulation of cool-flame affected autoignition in diesel engine-relevant conditions. Proceedings of the Combustion Institute, 2017, 36, 3567-3575.	3.9	70
29	Evaluation of models for flame stretch due to curvature in the thin reaction zones regime. Proceedings of the Combustion Institute, 2005, 30, 647-655.	3.9	63
30	Characterisation of two-stage ignition in diesel engine-relevant thermochemical conditions using direct numerical simulation. Combustion and Flame, 2016, 172, 326-341.	5.2	63
31	Polybrachial structures in dimethyl ether edge-flames at negative temperature coefficient conditions. Proceedings of the Combustion Institute, 2015, 35, 999-1006.	3.9	62
32	A direct numerical simulation study of flame structure and stabilization of an experimental high Ka CH4/air premixed jet flame. Combustion and Flame, 2017, 180, 110-123.	5.2	61
33	On the fractal characteristics of low Damköhler number flames. Combustion and Flame, 2013, 160, 2422-2433.	5.2	60
34	Turbulence-flame interactions in DNS of a laboratory high Karlovitz premixed turbulent jet flame. Physics of Fluids, 2016, 28, .	4.0	60
35	On velocity and reactive scalar spectra in turbulent premixed flames. Journal of Fluid Mechanics, 2014, 754, 456-487.	3.4	59
36	A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN). SAE International Journal of Engines, 0, 9, 883-898.	0.4	58

#	Article	IF	CITATIONS
37	Performance and emissions of hydrogen-diesel dual direct injection (H2DDI) in a single-cylinder compression-ignition engine. International Journal of Hydrogen Energy, 2021, 46, 1302-1314.	7.1	57
38	LES of a premixed jet flame DNS using a strained flamelet model. Combustion and Flame, 2013, 160, 2911-2927.	5.2	54
39	Two-stage autoignition and edge flames in a high pressure turbulent jet. Journal of Fluid Mechanics, 2017, 824, 5-41.	3.4	51
40	Mechanisms of flame stabilisation at low lifted height in a turbulent lifted slot-jet flame. Journal of Fluid Mechanics, 2015, 777, 633-689.	3.4	49
41	Direct numerical simulation of a high Ka CH4/air stratified premixed jet flame. Combustion and Flame, 2018, 193, 229-245.	5.2	48
42	Flamelet-based modeling of auto-ignition with thermal inhomogeneities for application to HCCI engines. Proceedings of the Combustion Institute, 2007, 31, 2903-2911.	3.9	46
43	Disturbance energy transport and sound production in gaseous combustion. Journal of Fluid Mechanics, 2012, 707, 53-73.	3.4	46
44	An evaluation of the one-dimensional turbulence model: Comparison with direct numerical simulations of CO/H2 jets with extinction and reignition. Proceedings of the Combustion Institute, 2011, 33, 1515-1522.	3.9	45
45	Direct numerical simulations of turbulent lean premixed combustion. Journal of Physics: Conference Series, 2006, 46, 38-42.	0.4	44
46	The planar imaging of laser induced fluorescence of fuel and hydroxyl for a wall-interacting jet in a single-cylinder, automotive-size, optically accessible diesel engine. Fuel, 2015, 140, 143-155.	6.4	44
47	Effect of intake air temperature and common-rail pressure on ethanol combustion in a single-cylinder light-duty diesel engine. Fuel, 2016, 180, 9-19.	6.4	44
48	Combustion characterization of waste cooking oil and canola oil based biodiesels under simulated engine conditions. Fuel, 2018, 224, 167-177.	6.4	44
49	An algorithm for LES of premixed compressible flows using the Conditional Moment Closure model. Journal of Computational Physics, 2011, 230, 7687-7705.	3.8	43
50	On the potential of ethanol fuel stratification to extend the high load limit in stratified-charge compression-ignition engines. Fuel, 2012, 99, 45-54.	6.4	43
51	Estimation of three-dimensional flame surface densities from planar images in turbulent premixed combustion. Experiments in Fluids, 2010, 49, 267-278.	2.4	42
52	Estimates of the three-dimensional flame surface density and every term in its transport equation from two-dimensional measurements. Proceedings of the Combustion Institute, 2011, 33, 1447-1454.	3.9	40
53	Edge flame structure in a turbulent lifted flame: A direct numerical simulation study. Combustion and Flame, 2016, 169, 110-128.	5.2	40
54	Soot formation modelling for n-dodecane sprays using the transported PDF model. Combustion and Flame, 2018, 192, 101-119.	5.2	40

#	Article	IF	CITATIONS
55	The development of hydroxyl and soot in a methyl decanoate-fuelled automotive-size optical diesel engine. Fuel, 2016, 166, 320-332.	6.4	39
56	Large eddy simulation/dynamic thickened flame modeling of a high Karlovitz number turbulent premixed jet flame. Proceedings of the Combustion Institute, 2019, 37, 2555-2563.	3.9	38
57	Sound generation by laminar premixed flame annihilation. Journal of Fluid Mechanics, 2011, 679, 194-218.	3.4	37
58	Determination of three-dimensional quantities related to scalar dissipation rate and its transport from two-dimensional measurements: Direct Numerical Simulation based validation. Proceedings of the Combustion Institute, 2013, 34, 1151-1162.	3.9	36
59	A stochastic multiple mapping conditioning computational model in OpenFOAM for turbulent combustion. Computers and Fluids, 2018, 172, 410-425.	2.5	36
60	Physical and numerical realizability requirements for flame surface density approaches. Combustion Theory and Modelling, 2001, 5, 699-720.	1.9	35
61	Visualizing Multivariate Volume Data from Turbulent Combustion Simulations. Computing in Science and Engineering, 2007, 9, 76-83.	1.2	35
62	A DNS evaluation of mixing models for transported PDF modelling of turbulent nonpremixed flames. Combustion and Flame, 2014, 161, 2085-2106.	5.2	35
63	Ignition in compositionally and thermally stratified n-heptane/air mixtures: A direct numerical simulation study. Proceedings of the Combustion Institute, 2015, 35, 3027-3035.	3.9	34
64	An analysis of lower-dimensional approximations to the scalar dissipation rate using direct numerical simulations of plane jet flames. Proceedings of the Combustion Institute, 2009, 32, 1455-1463.	3.9	33
65	Feature-Based Statistical Analysis of Combustion Simulation Data. IEEE Transactions on Visualization and Computer Graphics, 2011, 17, 1822-1831.	4.4	33
66	Dependency of engine combustion on blending ratio variations of lipase-catalysed coconut oil biodiesel and petroleum diesel. Fuel, 2016, 169, 146-157.	6.4	33
67	A parametric study of ignition dynamics at ECN Spray A thermochemical conditions using 2D DNS. Proceedings of the Combustion Institute, 2019, 37, 4787-4795.	3.9	33
68	A numerical study of the autoignition of dimethyl ether with temperature inhomogeneities. Proceedings of the Combustion Institute, 2013, 34, 803-812.	3.9	32
69	The shortening of lift-off length associated with jet–wall and jet–jet interaction in a small-bore optical diesel engine. Fuel, 2014, 125, 1-14.	6.4	31
70	Spray and Combustion Investigation of Post Injections under Low-Temperature Combustion Conditions with Biodiesel. Energy & amp; Fuels, 2018, 32, 8727-8742.	5.1	31
71	Laser Enhanced Hydrogen Passivation of Silicon Wafers. International Journal of Photoenergy, 2015, 2015, 1-13.	2.5	30
72	Automated determination of size and morphology information from soot transmission electron microscope (TEM)-generated images. Journal of Nanoparticle Research, 2016, 18, 1.	1.9	30

#	Article	IF	CITATIONS
73	Performance of transported PDF mixing models in a turbulent premixed flame. Proceedings of the Combustion Institute, 2017, 36, 1987-1995.	3.9	30
74	Sound generation by turbulent premixed flames. Journal of Fluid Mechanics, 2018, 843, 29-52.	3.4	30
75	Direct numerical simulation of a spatially developing n-dodecane jet flame under Spray A thermochemical conditions: Flame structure and stabilisation mechanism. Combustion and Flame, 2020, 217, 57-76.	5.2	29
76	Flame thickness and conditional scalar dissipation rate in a premixed temporal turbulent reacting jet. Combustion and Flame, 2017, 184, 273-285.	5.2	28
77	A parametric study of sound generation by premixed laminar flame annihilation. Combustion and Flame, 2012, 159, 757-769.	5.2	27
78	A mixing timescale model for TPDF simulations of turbulent premixed flames. Combustion and Flame, 2017, 177, 171-183.	5.2	27
79	Visualization of hydrogen jet evolution and combustion under simulated direct-injection compression-ignition engine conditions. International Journal of Hydrogen Energy, 2020, 45, 32562-32578.	7.1	27
80	Imaging diagnostics of ethanol port fuel injection sprays for automobile engine applications. Applied Thermal Engineering, 2013, 52, 24-37.	6.0	26
81	Spray Penetrations of Ethanol, Gasoline and Iso-Octane in an Optically Accessible Spark-Ignition Direct-Injection Engine. SAE International Journal of Fuels and Lubricants, 0, 7, 1010-1026.	0.2	26
82	Influence of turbulent fluctuations on radiation heat transfer, NO and soot formation under ECN Spray A conditions. Proceedings of the Combustion Institute, 2017, 36, 3551-3558.	3.9	26
83	Modeling combustion under engine combustion network Spray A conditions with multiple injections using the transported probability density function method. International Journal of Engine Research, 2017, 18, 6-14.	2.3	26
84	Differential diffusion effects during the ignition of a thermally stratified premixed hydrogen–air mixture subject to turbulence. Proceedings of the Combustion Institute, 2009, 32, 1465-1472.	3.9	24
85	Regimes of premixed turbulent spontaneous ignition and deflagration under gas-turbine reheat combustion conditions. Combustion and Flame, 2019, 208, 402-419.	5.2	24
86	Effect of Ethanol Port-Fuel-Injector Position on Dual-Fuel Combustion in an Automotive-Size Diesel Engine. Energy & Fuels, 2014, 28, 340-348.	5.1	23
87	A Comparative Study of Conditional Moment Closure Modelling for Ignition of iso-octane and n-heptane in Thermally Stratified Mixtures. Flow, Turbulence and Combustion, 2015, 95, 1-28.	2.6	23
88	Low-temperature chemistry in n-heptane/air premixed turbulent flames. Combustion and Flame, 2018, 196, 71-84.	5.2	21
89	Conditional moment closure modelling for HCCI with temperature inhomogeneities. Proceedings of the Combustion Institute, 2015, 35, 3087-3095.	3.9	20
90	External irradiation effect on the growth and evolution of in-flame soot species. Carbon, 2016, 102, 161-171.	10.3	20

#	Article	IF	CITATIONS
91	Effect of jet–jet interactions on soot formation in a small-bore diesel engine. Proceedings of the Combustion Institute, 2017, 36, 3559-3566.	3.9	20
92	A direct numerical simulation study of frequency and Lewis number effects on sound generation by two-dimensional forced laminar premixed flames. Proceedings of the Combustion Institute, 2013, 34, 1093-1100.	3.9	19
93	Assessment of chemical scalars for heat release rate measurement in highly turbulent premixed combustion including experimental factors. Combustion and Flame, 2018, 194, 485-506.	5.2	19
94	Topological Feature Extraction for Comparison of Terascale Combustion Simulation Data. Mathematics and Visualization, 2011, , 229-240.	0.6	19
95	Probability density function treatment of turbulence/chemistry interactions during the ignition of a temperature-stratified mixture for application to HCCI engine modeling. Combustion and Flame, 2008, 155, 571-584.	5.2	18
96	Double Injection Strategies for Ethanol-Fuelled Gasoline Compression Ignition (GCI) Combustion in a Single-Cylinder Light-Duty Diesel Engine. , 0, , .		18
97	Modeling turbulence–chemistry interaction in lean premixed hydrogen flames with a strained flamelet model. Combustion and Flame, 2016, 174, 194-207.	5.2	18
98	Direct numerical simulations of rich premixed turbulent n-dodecane/air flames at diesel engine conditions. Proceedings of the Combustion Institute, 2019, 37, 4655-4662.	3.9	18
99	A Comparative Analysis on Engine Performance of a Conventional Diesel Fuel and 10% Biodiesel Blends Produced from Coconut Oils. SAE International Journal of Fuels and Lubricants, 0, 8, 597-609.	0.2	17
100	Application of a multiple mapping conditioning mixing model to ECN Spray A. Proceedings of the Combustion Institute, 2019, 37, 3263-3270.	3.9	17
101	A comparative study of sound generation by laminar, combusting and non-combusting jet flows. Theoretical and Computational Fluid Dynamics, 2014, 28, 385-408.	2.2	16
102	Examination of the effect of differential molecular diffusion in DNS of turbulent non-premixed flames. International Journal of Hydrogen Energy, 2017, 42, 11879-11892.	7.1	16
103	Influence of Injection Timing for Split-Injection Strategies on Well-Mixed High-Load Combustion Performance in an Optically Accessible Spark-Ignition Direct-Injection (SIDI) Engine. , 0, , .		16
104	Micromixing Models for PDF Simulations of Turbulent Premixed Flames. Combustion Science and Technology, 2019, 191, 1430-1455.	2.3	16
105	Turbulence, evaporation and combustion interactions in <mml:math xmlns:mml="http://www.w3.org/1998/Math/MathML" altimg="si19.svg"><mml:mi>n</mml:mi>-heptane droplets under high pressure conditions using DNS. Combustion and Flame. 2021, 225, 417-427.</mml:math 	5.2	16
106	Z-type Schlieren Setup and its Application to High-Speed Imaging of Gasoline Sprays. , 0, , .		15
107	Determination of 3D flame surface density variables from 2D measurements: Validation using direct numerical simulation. Physics of Fluids, 2011, 23, 065113.	4.0	15
108	Beam Splitting System for the Development of a Concentrating Linear Fresnel Solar Hybrid PV/T Collector. , 2013, , .		15

EVATT R HAWKES

#	Article	IF	CITATIONS
109	An evaluation of gas-phase micro-mixing models with differential mixing timescales in transported PDF simulations of sooting flame DNS. Proceedings of the Combustion Institute, 2021, 38, 2731-2739.	3.9	15
110	Direct numerical simulation of turbulent boundary layer premixed combustion under auto-ignitive conditions. Combustion and Flame, 2021, 228, 292-301.	5.2	15
111	A multiple mapping conditioning mixing model with a mixture-fraction like reference variable. Part 1: Model derivation and ideal flow test cases. Combustion and Flame, 2017, 181, 342-353.	5.2	14
112	A multiple mapping conditioning mixing model with a mixture-fraction like reference variable. Part 2: RANS implementation and validation against a turbulent jet flame. Combustion and Flame, 2017, 181, 354-364.	5.2	14
113	Performance assessment of flamelet models in flame-resolved LES of a high Karlovitz methane/air stratified premixed jet flame. Proceedings of the Combustion Institute, 2019, 37, 2545-2553.	3.9	14
114	Doubly conditional moment closure modelling for HCCI with temperature inhomogeneities. Proceedings of the Combustion Institute, 2017, 36, 3677-3685.	3.9	13
115	Structure and propagation of two-dimensional, partially premixed, laminar flames in diesel engine conditions. Proceedings of the Combustion Institute, 2019, 37, 1961-1969.	3.9	13
116	An a priori evaluation of a principal component and artificial neural network based combustion model in diesel engine conditions. Proceedings of the Combustion Institute, 2021, 38, 2701-2709.	3.9	13
117	Sound generation by premixed flame annihilation with full and simple chemistry. Proceedings of the Combustion Institute, 2015, 35, 3317-3325.	3.9	11
118	Assessing the Importance of Radiative Heat Transfer for ECN Spray A Using the Transported PDF Method. SAE International Journal of Fuels and Lubricants, 0, 9, 100-107.	0.2	11
119	Local extinction and reignition mechanism in a turbulent lifted flame: A direct numerical simulation study. Proceedings of the Combustion Institute, 2017, 36, 1685-1692.	3.9	11
120	A DNS evaluation of mixing and evaporation models for TPDF modelling of nonpremixed spray flames. Proceedings of the Combustion Institute, 2019, 37, 3363-3372.	3.9	11
121	2-D and 3-D measurements of flame stretch and turbulence–flame interactions in turbulent premixed flames using DNS. Journal of Fluid Mechanics, 2021, 913, .	3.4	11
122	Ignition and flame stabilisation of primary reference fuel sprays at engine-relevant conditions. Combustion and Flame, 2021, 233, 111620.	5.2	11
123	EFFECT OF ETHANOL AND AMBIENT PRESSURE ON PORT-FUEL-INJECTION SPRAYS IN AN OPTICALLY ACCESSIBLE INTAKE CHAMBER. Atomization and Sprays, 2011, 21, 427-445.	0.8	11
124	Analysis and Testing of a Portable Thermal Battery. Journal of Thermal Science and Engineering Applications, 2014, 6, .	1.5	10
125	A comparison of high-temperature reaction and soot processes of conventional diesel and methyl decanoate. Fuel, 2018, 226, 635-643.	6.4	10
126	Flame edge statistics in turbulent combustion. Proceedings of the Combustion Institute, 2011, 33, 1439-1446.	3.9	9

#	Article	IF	CITATIONS
127	Application of LED-based thermographic phosphorescent technique to diesel combustion chamber walls in a pre-burn-type optical constant-volume vessel. Experiments in Fluids, 2019, 60, 1.	2.4	8
128	Turbulence/flame/wall interactions in non-premixed inclined slot-jet flames impinging at a wall using direct numerical simulation. Proceedings of the Combustion Institute, 2021, 38, 2711-2720.	3.9	8
129	Multiple Injection Strategy Investigation for Well-Mixed Operation in an Optical Wall-Guided Spark-Ignition Direct-Injection (WG-SIDI) Engine through Flame Shape Analysis. , 0, , .		7
130	A priori analysis of a power-law mixing model for transported PDF model based on high Karlovitz turbulent premixed DNS flames. Proceedings of the Combustion Institute, 2021, 38, 2917-2927.	3.9	7
131	A parametric study of autoigniting hydrogen jets under compression-ignition engine conditions. International Journal of Hydrogen Energy, 2022, 47, 21307-21322.	7.1	7
132	Effect of Pilot Injection on Diesel Knock in a Small-Bore Optical Engine. , 2012, , .		6
133	One-Dimensional Modeling of Turbulent Premixed Jet Flames - Comparison to DNS. Flow, Turbulence and Combustion, 2016, 97, 913-930.	2.6	6
134	Wall-impinging laminar premixed n-dodecane flames under autoignitive conditions. Proceedings of the Combustion Institute, 2019, 37, 1647-1654.	3.9	6
135	Soot Formation Modelling of Spray-A Using a Transported PDF Approach. , 2015, , .		5
136	A Numerical Study of the Influence of Different Operating Conditions on the Combustion Development in an Automotive-Size Diesel Engine. , 0, , .		5
137	A new optical concentrator design and analysis for rooftop solar applications. Proceedings of SPIE, 2015, , .	0.8	4
138	A Conditional Moment Closure Study of Chemical Reaction Source Terms in SCCI Combustion. Flow, Turbulence and Combustion, 2018, 100, 93-118.	2.6	4
139	Flame Annihilation Displacement Speed and Stretch Rate in Turbulent Premixed Flames. Flow, Turbulence and Combustion, 2020, 104, 977-996.	2.6	4
140	A mixing timescale model for differential mixing in transported probability density function simulations of turbulent non-premixed flames. Physics of Fluids, 2022, 34, 067122.	4.0	4
141	LES/PDF modelling of a one-meter diameter methane fire plume. Proceedings of the Combustion Institute, 2021, 38, 4943-4951.	3.9	3
142	Diode laser annealing of CZTS thin film solar cells. , 2015, , .		2
143	Design and indoor testing of a compact optical concentrator. Optical Engineering, 2017, 56, 015102.	1.0	2
144	Assessment of critical species for differential mixing in transported PDF simulations of a non-premixed ethylene DNS flame. Combustion and Flame, 2022, 244, 112240.	5.2	2

#	Article	IF	CITATIONS
145	A priori examination of reduced chemistry models derived from canonical stirred reactors using three-dimensional direct numerical simulation datasets. , 2021, , .		1
146	Modeling and Testing of a Portable Thermal Battery. , 2013, , .		0
147	Assessment of artificial fluid properties for high-order accurate large-eddy simulations of shock-free compressible turbulent flows with strong temperature gradients. Computers and Fluids, 2019, 190, 274-293.	2.5	0
148	NUMERICAL INVESTIGATION OF A STRATIFIED CHARGE COMPRESSION IGNITION ENGINE WITH LATE INJECTION UNDER LOW-LOAD NONCOMBUSTING CONDITIONS. Atomization and Sprays, 2015, 25, 255-284.	0.8	0