Janine Pfetzing-Micklich

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7438831/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Experimental and Theoretical Investigation on Phase Formation and Mechanical Properties in Cr–Co–Ni Alloys Processed Using a Novel Thin-Film Quenching Technique. ACS Combinatorial Science, 2020, 22, 232-247.	3.8	3
2	Si micro-cantilever sensor chips for space-resolved stress measurements in physical and plasma-enhanced chemical vapour deposition. Sensors and Actuators A: Physical, 2018, 270, 271-277.	2.0	9
3	Identification of a ternary μ-phase in the Co-Ti-W system – An advanced correlative thin-film and bulk combinatorial materials investigation. Acta Materialia, 2017, 138, 100-110.	3.8	12
4	Composition–Structure–Property Relations in Au35–68Cu49–15Al16–17 Shape Memory Thin Films. Shape Memory and Superelasticity, 2016, 2, 80-85.	1.1	2
5	Assessment of strain hardening in copper single crystals using in situ SEM microshear experiments. Acta Materialia, 2016, 113, 320-334.	3.8	20
6	Investigation of the Thinâ€ <scp>F</scp> ilm Phase Diagram of the Cr– <scp>N</scp> i– <scp>R</scp> e System by Highâ€ <scp>T</scp> hroughput Experimentation. Advanced Engineering Materials, 2014, 16, 588-593.	1.6	14
7	Rapid Identification of Areas of Interest in Thin Film Materials Libraries by Combining Electrical, Optical, X-ray Diffraction, and Mechanical High-Throughput Measurements: A Case Study for the System Ni–Al. ACS Combinatorial Science, 2014, 16, 686-694.	3.8	37
8	Mechanical properties of SiLixthin films at different stages of electrochemical Li insertion. Physica Status Solidi (A) Applications and Materials Science, 2014, 211, 2650-2656.	0.8	13
9	Investigation of Optical, Electrical, and Mechanical Properties of MOCVDâ€grown ZrO ₂ Films. Chemical Vapor Deposition, 2014, 20, 320-327.	1.4	6
10	The effect of notches on the fatigue behavior in NiTi shape memory alloys. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 610, 188-196.	2.6	5
11	Microshear deformation of gold single crystals. Acta Materialia, 2014, 62, 225-238.	3.8	41
12	Direct microstructural evidence for the stress induced formation of martensite during nanonindentation of NiTi. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2014, 591, 33-37.	2.6	16
13	Sudden stress-induced transformation events during nanoindentation of NiTi shape memory alloys. Acta Materialia, 2014, 78, 144-160.	3.8	44
14	Orientation dependence of stress-induced martensite formation during nanoindentation in NiTi shape memory alloys. Acta Materialia, 2014, 68, 19-31.	3.8	45
15	Investigation of ternary subsystems of superalloys by thin-film combinatorial synthesis and high-throughput analysis. MATEC Web of Conferences, 2014, 14, 18002.	0.1	3
16	Impurity levels and fatigue lives of pseudoelastic NiTi shape memory alloys. Acta Materialia, 2013, 61, 3667-3686.	3.8	145
17	On the crystallographic anisotropy of nanoindentation in pseudoelastic NiTi. Acta Materialia, 2013, 61, 602-616.	3.8	66
18	Thickness-dependence of the B2–B19 martensitic transformation in nanoscale shape memory alloy thin films: Zero-hysteresis in 75nm thick Ti51Ni38Cu11 thin films. Acta Materialia, 2012, 60, 306-313.	3.8	30

#	Article	IF	CITATIONS
19	Orientation dependence of stress-induced phase transformation and dislocation plasticity in NiTi shape memory alloys on the micro scale. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2012, 538, 265-271.	2.6	57
20	Microâ€shear deformation of pure copper. Materialwissenschaft Und Werkstofftechnik, 2011, 42, 219-223.	0.5	12
21	Nanoindentation of a Pseudoelastic NiTiFe Shape Memory Alloy. Advanced Engineering Materials, 2010, 12, 13-19.	1.6	34
22	Axial–torsional thermomechanical fatigue of a near-γ TiAl-alloy. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2010, 527, 3829-3839.	2.6	32
23	Nanoindentation of pseudoelastic NiTi shape memory alloys: Thermomechanical and microstructural aspects. International Journal of Materials Research, 2009, 100, 936-942.	0.1	22
24	Nanoindentation of Ti50Ni48Fe2 and Ti50Ni40Cu10 shape memory alloys. International Journal of Materials Research, 2009, 100, 594-602.	0.1	5
25	Microstructural anisotropy, uniaxial and biaxial creep behavior of Ti–45Al–5Nb–0.2B–0.2C. Materials Science & Engineering A: Structural Materials: Properties, Microstructure and Processing, 2009, 510-511, 368-372.	2.6	10
26	TEM investigation of the microstructural evolution during nanoindentation of NiTi. , 2009, , .		5
27	TEM observation of stress-induced martensite after nanoindentation of pseudoelastic Ti50Ni48Fe2. Scripta Materialia, 2008, 58, 743-746.	2.6	22