Lars-Olaf Cardell

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7438762/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Neutrophil phenotypes in bronchial airways differentiate single from dual responding allergic asthmatics. Clinical and Experimental Allergy, 2023, 53, 65-77.	1.4	5
2	Highâ€dose pollen intralymphatic immunotherapy: Two RDBPC trials question the benefit of dose increase. Allergy: European Journal of Allergy and Clinical Immunology, 2022, 77, 883-896.	2.7	16
3	Acute odynophagia: A new symptom of COVIDâ€19 during the SARSâ€CoVâ€2 Omicron variant wave in Sweden. Journal of Internal Medicine, 2022, 292, 154-161.	2.7	36
4	Tumour-draining lymph nodes in head and neck cancer are characterized by accumulation of CTLA-4 and PD-1 expressing Treg cells. Translational Oncology, 2022, 23, 101469.	1.7	6
5	CD4 ⁺ and CD8 ⁺ T cells in sentinel nodes exhibit distinct pattern of PDâ€1, CD69, and HLAâ€DR expression compared to tumor tissue in oral squamous cell carcinoma. Cancer Science, 2021, 112, 1048-1059.	1.7	15
6	The SPâ€TLR axis, which locally primes the nasal mucosa, is impeded in patients with allergic rhinitis. Clinical and Translational Allergy, 2021, 11, e12009.	1.4	5
7	Single-cell analysis pinpoints distinct populations of cytotoxic CD4 ⁺ T cells and an IL-10 ⁺ CD109 ⁺ T _H 2 cell population in nasal polyps. Science Immunology, 2021, 6, .	5.6	30
8	Nitric Oxide Is Locally Produced in the Human Middle Ear and Is Reduced by Acquired Cholesteatoma. Otology and Neurotology, 2021, Publish Ahead of Print, .	0.7	0
9	Intralymphatic immunotherapy in pollen-allergic young adults with rhinoconjunctivitis and mild asthma: AÂrandomized trial. Journal of Allergy and Clinical Immunology, 2020, 145, 1005-1007.e7.	1.5	35
10	Extensive qPCR analysis reveals altered gene expression in middle ear mucosa from cholesteatoma patients. PLoS ONE, 2020, 15, e0239161.	1.1	5
11	A preseason booster prolongs the increase of allergen specific IgG4 levels, after basic allergen intralymphatic immunotherapy, against grass pollen seasonal allergy. Allergy, Asthma and Clinical Immunology, 2020, 16, 31.	0.9	17
12	Realâ€life assessment of chronic rhinosinusitis patients using mobile technology: The mySinusitisCoach project by EUFOREA. Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 2867-2878.	2.7	45
13	Effects of MP-AzeFlu enhanced by activation of bitter taste receptor TAS2R. Allergy, Asthma and Clinical Immunology, 2020, 16, 45.	0.9	6
14	CD16 ^{high} CD62L ^{dim} neutrophils induce nerveâ€mediated airway hyperreactivity. Clinical and Experimental Allergy, 2020, 50, 756-759.	1.4	3
15	A new role for "eat me―and "don't eat me―markers on neutrophils in asthmatic airway inflammation Allergy: European Journal of Allergy and Clinical Immunology, 2020, 75, 1510-1512.	¹ 2.7	3
16	Endotypes of chronic rhinosinusitis: Impact on management. Journal of Allergy and Clinical Immunology, 2020, 145, 752-756.	1.5	60
17	Activation of T helper cells in sentinel node predicts poor prognosis in oral squamous cell carcinoma. Scientific Reports, 2020, 10, 22352.	1.6	4

18 Title is missing!. , 2020, 15, e0239161.

#	Article	IF	CITATIONS
19	Title is missing!. , 2020, 15, e0239161.		Ο
20	Title is missing!. , 2020, 15, e0239161.		0
21	Title is missing!. , 2020, 15, e0239161.		Ο
22	Dividing neutrophils in subsets reveals a significant role for activated neutrophils in the development of airway hyperreactivity. Clinical and Experimental Allergy, 2019, 49, 285-291.	1.4	15
23	Subsetting reveals CD16 ^{high} CD62L ^{dim} neutrophils in chronic rhinosinusitis with nasal polyps. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2499-2501.	2.7	15
24	The potential role of CD16 ^{high} CD62L ^{dim} neutrophils in the allergic asthma. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 2265-2268.	2.7	10
25	Intralymphatic Immunotherapy: Update and Unmet Needs. International Archives of Allergy and Immunology, 2019, 178, 141-149.	0.9	71
26	Dupilumab reduces local type 2 proâ€inflammatory biomarkers in chronic rhinosinusitis with nasal polyposis. Allergy: European Journal of Allergy and Clinical Immunology, 2019, 74, 743-752.	2.7	124
27	Activation of Activin receptor-like kinases curbs mucosal inflammation and proliferation in chronic rhinosinusitis with nasal polyps. Scientific Reports, 2018, 8, 1561.	1.6	3
28	Substance P represents a novel first-line defense mechanism in the nose. Journal of Allergy and Clinical Immunology, 2018, 141, 128-136.e3.	1.5	26
29	Impact of Rhinitis on Work Productivity: A Systematic Review. Journal of Allergy and Clinical Immunology: in Practice, 2018, 6, 1274-1286.e9.	2.0	132
30	Rapid nodal staging of head and neck cancer surgical specimens with flow cytometric analysis. British Journal of Cancer, 2018, 118, 421-427.	2.9	15
31	Reply. Journal of Allergy and Clinical Immunology, 2018, 142, 1677-1678.	1.5	0
32	Intralymphatic immunotherapy with 2 concomitant allergens, birch and grass: AÂrandomized, double-blind, placebo-controlled trial. Journal of Allergy and Clinical Immunology, 2018, 142, 1338-1341.e9.	1.5	41
33	NET-producing CD16 ^{high} CD62L ^{dim} neutrophils migrate to tumor sites and predict improved survival in patients with HNSCC. International Journal of Cancer, 2017, 140, 2557-2567.	2.3	60
34	A possible role for neutrophils in allergic rhinitis revealed after cellular subclassification. Scientific Reports, 2017, 7, 43568.	1.6	50
35	TOTALL: high cost of allergic rhinitis—a national Swedish population-based questionnaire study. Npj Primary Care Respiratory Medicine, 2016, 26, 15082.	1.1	87
36	The bronchodilatory capacity of imiquimod: the existence of two mechanisms. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 311, L178-L179.	1.3	0

LARS-OLAF CARDELL

#	Article	IF	CITATIONS
37	The TLR7 agonist imiquimod induces bronchodilation via a nonneuronal TLR7-independent mechanism: a possible role for quinoline in airway dilation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L1121-L1129.	1.3	11
38	Intralymphatic immunotherapy of pollen-induced rhinoconjunctivitis: a double-blind placebo-controlled trial. Respiratory Research, 2016, 17, 10.	1.4	68
39	Novel strategies for the treatment of grass pollen-induced allergic rhinitis. Expert Opinion on Biological Therapy, 2016, 16, 1143-1150.	1.4	13
40	Antigen-presenting epithelial cells can play a pivotal role in airway allergy. Journal of Allergy and Clinical Immunology, 2016, 137, 957-960.e7.	1.5	14
41	Inflammatory endotypes of chronic rhinosinusitis based on cluster analysis of biomarkers. Journal of Allergy and Clinical Immunology, 2016, 137, 1449-1456.e4.	1.5	833
42	Chronic Rhinosinusitis Patients Show Accumulation of Genetic Variants in PARS2. PLoS ONE, 2016, 11, e0158202.	1.1	3
43	A role for neuropeptides in innate immune inflammation of the nose. Clinical and Translational Allergy, 2015, 5, O2.	1.4	Ο
44	The effect of MP29â€02* is mediated via bitter taste receptors (TAS2R). Clinical and Translational Allergy, 2015, 5, P17.	1.4	1
45	Chronic rhinosinusitis is rare but bothersome in adolescents from a Swedish population-based cohort. Journal of Allergy and Clinical Immunology, 2015, 136, 512-514.e6.	1.5	12
46	Deprived TLR9 Expression in Apparently Healthy Nasal Mucosa Might Trigger Polyp-Growth in Chronic Rhinosinusitis Patients. PLoS ONE, 2014, 9, e105618.	1.1	10
47	LEAP-2, LL-37 and RNase7 in tonsillar tissue: downregulated expression in seasonal allergic rhinitis. Pathogens and Disease, 2014, 72, 55-60.	0.8	6
48	Replication study of genetic variants associated with chronic rhinosinusitis and nasal polyposis. Journal of Allergy and Clinical Immunology, 2014, 133, 273-275.	1.5	25
49	Inverse Immunological Responses Induced by Allergic Rhinitis and Head and Neck Squamous Cell Carcinoma. PLoS ONE, 2014, 9, e86796.	1.1	4
50	Functional Effects of Toll-Like Receptor (TLR)3, 7, 9, RIG-I and MDA-5 Stimulation in Nasal Epithelial Cells. PLoS ONE, 2014, 9, e98239.	1.1	68
51	Toll-Like Receptor Ligands LPS and Poly (I:C) Exacerbate Airway Hyperresponsiveness in a Model of Airway Allergy in Mice, Independently of Inflammation. PLoS ONE, 2014, 9, e104114.	1.1	36
52	Downregulation of epithelial MHC II expression in chronic rhinosinusitis with polyps. Clinical and Translational Allergy, 2013, 3, O9.	1.4	0
53	Upregulated levels of human βâ€defensins in patients with seasonal allergic rhinitis after allergenâ€specific immunotherapy treatment. International Forum of Allergy and Rhinology, 2013, 3, 99-103.	1.5	8
54	Intralymphatic allergen-specific immunotherapy: An effective and safe alternative treatment route for pollen-induced allergic rhinitis. Journal of Allergy and Clinical Immunology, 2013, 131, 412-420.	1.5	122

LARS-OLAF CARDELL

#	Article	IF	CITATIONS
55	Toll-like receptor (TLR) 7 decreases and TLR9 increases the airway responses in mice with established allergic inflammation. European Journal of Pharmacology, 2013, 718, 544-551.	1.7	16
56	Nod-like receptors in head and neck squamous cell carcinoma. Acta Oto-Laryngologica, 2013, 133, 1333-1344.	0.3	9
57	Poor Reproducibility of Allergic Rhinitis SNP Associations. PLoS ONE, 2013, 8, e53975.	1.1	19
58	Innate Immune Receptors in Human Airway Smooth Muscle Cells: Activation by TLR1/2, TLR3, TLR4, TLR7 and NOD1 Agonists. PLoS ONE, 2013, 8, e68701.	1.1	43
59	Patternâ€recognition receptors in human eosinophils. Immunology, 2012, 136, 11-20.	2.0	128
60	Toll-like receptor gene polymorphisms are associated with allergic rhinitis: a case control study. BMC Medical Genetics, 2012, 13, 66.	2.1	34
61	The Activation Pattern of Blood Leukocytes in Head and Neck Squamous Cell Carcinoma Is Correlated to Survival. PLoS ONE, 2012, 7, e51120.	1.1	56
62	Diminished levels of nasal S100A7 (psoriasin) in seasonal allergic rhinitis: an effect mediated by Th2 cytokines. Respiratory Research, 2012, 13, 2.	1.4	16
63	Reduced tonsillar expression of human β-defensin 1, 2 and 3 in allergic rhinitis. FEMS Immunology and Medical Microbiology, 2012, 65, 431-438.	2.7	21
64	Intranasal Administration of poly(I:C) and LPS in BALB/c Mice Induces Airway Hyperresponsiveness and Inflammation via Different Pathways. PLoS ONE, 2012, 7, e32110.	1.1	45
65	Retinoic Acid–inducible Gene 1–like Receptors in the Upper Respiratory Tract. American Journal of Rhinology and Allergy, 2011, 25, e262-e267.	1.0	3
66	NOD-like receptors and RIG-I-like receptors in human eosinophils: activation by NOD1 and NOD2 agonists. Immunology, 2011, 134, 314-325.	2.0	32
67	Toll-like receptor 7 activation reduces the contractile response of airway smooth muscle. European Journal of Pharmacology, 2011, 652, 145-151.	1.7	24
68	Altered Toll- and Nod-like receptor expression in human middle ear mucosa from patients with chronic middle ear disease. Journal of Infection, 2011, 63, 174-176.	1.7	23
69	The expression and function of Nodâ€like receptors in neutrophils. Immunology, 2010, 130, 55-63.	2.0	77
70	Nod1, Nod2 and Nalp3 receptors, new potential targets in treatment of allergic rhinitis?. Allergy: European Journal of Allergy and Clinical Immunology, 2010, 65, 1222-1226.	2.7	43
71	Effects of NOD-like receptors in human B lymphocytes and crosstalk between NOD1/NOD2 and Toll-like receptors. Journal of Leukocyte Biology, 2010, 89, 177-187.	1.5	58
72	Superantigen- and TLR-Dependent Activation of Tonsillar B Cells after Receptor-Mediated Endocytosis. Journal of Immunology, 2009, 182, 4713-4720.	0.4	32

LARS-OLAF CARDELL

#	Article	IF	CITATIONS
73	Role of atopic status in Toll-like receptor (TLR)7- and TLR9-mediated activation of human eosinophils. Journal of Leukocyte Biology, 2009, 85, 719-727.	1.5	56
74	Tollâ€like receptor agonists induce inflammation and cell death in a model of head and neck squamous cell carcinomas. Immunology, 2009, 128, e600-11.	2.0	68
75	Differentiated S100A7 expression in infected tonsils and tonsils from allergic individuals. FEMS Immunology and Medical Microbiology, 2008, 53, 413-420.	2.7	12
76	Interleukin-1β up-regulates tumor necrosis factor receptors in the mouse airways. Pulmonary Pharmacology and Therapeutics, 2008, 21, 675-681.	1.1	23
77	<i>Moraxella catarrhalis</i> -dependent tonsillar B cell activation does not lead to apoptosis but to vigorous proliferation resulting in nonspecific IgM production. Journal of Leukocyte Biology, 2008, 83, 1370-1378.	1.5	22
78	IL-1β–Induced Transcriptional Up-Regulation of Bradykinin B1and B2Receptors in Murine Airways. American Journal of Respiratory Cell and Molecular Biology, 2007, 36, 697-705.	1.4	36
79	Expression of Toll-like Receptor 9 in nose, peripheral blood and bone marrow during symptomatic allergic rhinitis. Respiratory Research, 2007, 8, 17.	1.4	48
80	IL-1β induces murine airway 5-HT2A receptor hyperresponsiveness via a non-transcriptional MAPK-dependent mechanism. Respiratory Research, 2007, 8, 29.	1.4	34
81	Toll-like receptors in cellular subsets of human tonsil T cells: altered expression during recurrent tonsillitis. Respiratory Research, 2006, 7, 36.	1.4	80
82	A distinct Toll-like receptor repertoire in human tonsillar B cells, directly activated by Pam3CSK4, R-837 and CpG-2006 stimulation. Immunology, 2006, 118, 060616085813002-???.	2.0	85
83	Topical steroids do not downregulate expression of growth-related oncogene-α in nasal polyps. Acta Oto-Laryngologica, 2006, 126, 375-380.	0.3	4
84	Up-regulation of Toll-like receptors 2, 3 and 4 in allergic rhinitis. Respiratory Research, 2005, 6, 100.	1.4	90
85	Psoriasin, one of several new proteins identified in nasal lavage fluid from allergic and non-allergic individuals using 2-dimensional gel electrophoresis and mass spectrometry. Respiratory Research, 2005, 6, 118.	1.4	46
86	Downregulation of peroxisome proliferator-activated receptors (PPARs) in nasal polyposis. Respiratory Research, 2005, 6, 132.	1.4	15
87	Up-regulation of bradykinin receptors in a murine in-vitro model of chronic airway inflammation. European Journal of Pharmacology, 2004, 489, 117-126.	1.7	45
88	Toll-like receptor stimulation induces airway hyper-responsiveness to bradykinin, an effect mediated by JNK and NF-Î₽B signaling pathways. European Journal of Immunology, 2004, 34, 1196-1207.	1.6	91
89	The Paranasal Sinuses as Reservoirs for Nitric Oxide. Acta Oto-Laryngologica, 2002, 122, 861-865.	0.3	30
90	The Paranasal Sinuses as Reservoirs for Nitric Oxide. Acta Oto-Laryngologica, 2002, 122, 861-865.	0.3	41

#	ARTICLE	IF	CITATIONS
91	An assay to evaluate the long-term effects of inflammatory mediators on murine airway smooth muscle: evidence that TNFα up-regulates 5-HT2A -mediated contraction. British Journal of Pharmacology, 2002, 137, 971-982.	2.7	68
92	Bronchodilatation in vivo by carbon monoxide, a cyclic GMP related messenger. British Journal of Pharmacology, 1998, 124, 1065-1068.	2.7	36