
Simon Gubbins

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7438486/publications.pdf Version: 2024-02-01

SIMON CURRINS

#	Article	IF	CITATIONS
1	Environmental sampling for the detection of footâ€andâ€mouth disease virus and peste des petits ruminants virus in a live goat market, Nepal. Transboundary and Emerging Diseases, 2022, 69, 3041-3046.	1.3	8
2	Assessment of the control measures for category A diseases of Animal Health Law: Lumpy Skin Disease. EFSA Journal, 2022, 20, e07121.	0.9	5
3	Airborne Transmission of Foot-and-Mouth Disease Virus: A Review of Past and Present Perspectives. Viruses, 2022, 14, 1009.	1.5	15
4	The importance of fineâ€scale predictors of wild boar habitat use in an isolated population. Ecology and Evolution, 2022, 12, .	0.8	1
5	Field-Reassortment of Bluetongue Virus Illustrates Plasticity of Virus Associated Phenotypic Traits in the Arthropod Vector and Mammalian Host <i>In Vivo</i>	1.5	9
6	Emergence dynamics of adult Culicoides biting midges at two farms in south-east England. Parasites and Vectors, 2022, 15, .	1.0	0
7	Cross-Serotype Reactivity of ELISAs Used to Detect Antibodies to the Structural Proteins of Foot-and-Mouth Disease Virus. Viruses, 2022, 14, 1495.	1.5	7
8	Environmental and air sampling are efficient methods for the detection and quantification of foot-and-mouth disease virus. Journal of Virological Methods, 2021, 287, 113988.	1.0	15
9	Scientific Opinion on the assessment of the control measures of the category A diseases of Animal Health Law: African Swine Fever. EFSA Journal, 2021, 19, e06402.	0.9	13
10	Thermal limits for flight activity of field-collected Culicoides in the United Kingdom defined under laboratory conditions. Parasites and Vectors, 2021, 14, 55.	1.0	8
11	Scientific Opinion on the assessment of the control measures of the category A diseases of Animal Health Law: African Horse Sickness. EFSA Journal, 2021, 19, e06403.	0.9	7
12	Quantifying and Modeling the Acquisition and Retention of Lumpy Skin Disease Virus by Hematophagus Insects Reveals Clinically but Not Subclinically Affected Cattle Are Promoters of Viral Transmission and Key Targets for Control of Disease Outbreaks. Journal of Virology, 2021, 95, .	1.5	30
13	Characterising Foot-and-Mouth Disease Virus in Clinical Samples Using Nanopore Sequencing. Frontiers in Veterinary Science, 2021, 8, 656256.	0.9	6
14	Scientific Opinion on the assessment of the control measures for category A diseases of Animal Health Law: Foot and Mouth Disease. EFSA Journal, 2021, 19, e06632.	0.9	3
15	Assessment of the control measures of the category A diseases of Animal Health Law: peste des petits ruminants. EFSA Journal, 2021, 19, e06708.	0.9	4
16	Inferring withinâ€flock transmission dynamics of highly pathogenic avian influenza H5N8 virus in France, 2020. Transboundary and Emerging Diseases, 2021, 68, 3151-3155.	1.3	13
17	Identification of a BTV-Strain-Specific Single Gene That Increases Culicoides Vector Infection Rate. Viruses, 2021, 13, 1781.	1.5	6
18	Endemic persistence of a highly contagious pathogen: Foot-and-mouth disease in its wildlife host. Science, 2021, 374, 104-109.	6.0	23

#	Article	IF	CITATIONS
19	80 questions for UK biological security. PLoS ONE, 2021, 16, e0241190.	1.1	8
20	Assessment of the control measures of the category A diseases of Animal Health Law: sheep and goat pox. EFSA Journal, 2021, 19, e06933.	0.9	2
21	Neethling vaccine proved highly effective in controlling lumpy skin disease epidemics in the Balkans. Preventive Veterinary Medicine, 2020, 181, 104595.	0.7	46
22	Inferences about the transmission of lumpy skin disease virus between herds from outbreaks in Albania in 2016. Preventive Veterinary Medicine, 2020, 181, 104602.	0.7	22
23	Rift Valley Fever – assessment of effectiveness of surveillance and control measures in the EU. EFSA Journal, 2020, 18, e06292.	0.9	7
24	Investigation of bovine ephemeral fever virus transmission by putative dipteran vectors under experimental conditions. Parasites and Vectors, 2020, 13, 597.	1.0	7
25	Quantifying the Transmission of Foot-and-Mouth Disease Virus in Cattle via a Contaminated Environment. MBio, 2020, 11, .	1.8	23
26	Towards a Sampling Rationale for African Swine Fever Virus Detection in Pork Products. Foods, 2020, 9, 1148.	1.9	3
27	Risk-based surveillance for bluetongue virus in cattle on the south coast of England in 2017 and 2018. Veterinary Record, 2020, 187, e96-e96.	0.2	1
28	Diversity of Transmission Outcomes Following Co-Infection of Sheep with Strains of Bluetongue Virus Serotype 1 and 8. Microorganisms, 2020, 8, 851.	1.6	5
29	Foot-and-Mouth Disease Surveillance Using Pooled Milk on a Large-Scale Dairy Farm in an Endemic Setting. Frontiers in Veterinary Science, 2020, 7, 264.	0.9	10
30	Culicoides species composition and molecular identification of host blood meals at two zoos in the UK. Parasites and Vectors, 2020, 13, 139.	1.0	14
31	Lumpy skin disease epidemiological report IV: data collection and analysis. EFSA Journal, 2020, 18, e06010.	0.9	52
32	Origin of Bluetongue Virus Serotype 8 Outbreak in Cyprus, September 2016. Viruses, 2020, 12, 96.	1.5	9
33	Two Lineages of KLRA with Contrasting Transcription Patterns Have Been Conserved at a Single Locus during Ruminant Speciation. Journal of Immunology, 2020, 204, 2455-2463.	0.4	1
34	Rift Valley Fever – epidemiological update and risk of introduction into Europe. EFSA Journal, 2020, 18, e06041.	0.9	49
35	Magnitude and Kinetics of T Cell and Antibody Responses During H1N1pdm09 Infection in Inbred Babraham Pigs and Outbred Pigs. Frontiers in Immunology, 2020, 11, 604913.	2.2	19
36	Towards a unified generic framework to define and observe contacts between livestock and wildlife: a systematic review. PeerJ, 2020, 8, e10221.	0.9	10

#	Article	IF	CITATIONS
37	Assessment of reproducibility of a VP7 Blocking ELISA diagnostic test for African horse sickness. Transboundary and Emerging Diseases, 2019, 66, 83-90.	1.3	8
38	Evidence of reduced viremia, pathogenicity and vector competence in a reâ€emerging European strain of bluetongue virus serotype 8 in sheep. Transboundary and Emerging Diseases, 2019, 66, 1177-1185.	1.3	33
39	Longâ€ŧerm shifts in the seasonal abundance of adult <i>Culicoides</i> biting midges and their impact on potential arbovirus outbreaks. Journal of Applied Ecology, 2019, 56, 1649-1660.	1.9	22
40	Lumpy skin disease. EFSA Journal, 2019, 17, e05638.	0.9	25
41	Using the basic reproduction number to assess the risk of transmission of lumpy skin disease virus by biting insects. Transboundary and Emerging Diseases, 2019, 66, 1873-1883.	1.3	20
42	Quantifying Levels of Peste Des Petits Ruminants (PPR) Virus in Excretions from Experimentally Infected Goats and Its Importance for Nascent PPR Eradication Programme. Viruses, 2019, 11, 249.	1.5	25
43	Evaluating the most appropriate pooling ratio for EDTA blood samples to detect Bluetongue virus using real-time RT-PCR. Veterinary Microbiology, 2018, 217, 58-63.	0.8	9
44	The immunogenicity of recombinant vaccines based on modified Vaccinia Ankara (MVA) viruses expressing African horse sickness virus VP2 antigens depends on the levels of expressed VP2 protein delivered to the host. Antiviral Research, 2018, 154, 132-139.	1.9	15
45	Efficacy of a high-potency multivalent foot-and-mouth disease virus vaccine in cattle against heterologous challenge with a field virus from the emerging A/ASIA/G-VII lineage. Vaccine, 2018, 36, 1901-1907.	1.7	26
46	Understanding the transmission of foot-and-mouth disease virus at different scales. Current Opinion in Virology, 2018, 28, 85-91.	2.6	68
47	Inferring within-herd transmission parameters for African swine fever virus using mortality data from outbreaks in the Russian Federation. Transboundary and Emerging Diseases, 2018, 65, e264-e271.	1.3	50
48	Lumpy skin disease: scientific and technical assistance on control and surveillance activities. EFSA Journal, 2018, 16, e05452.	0.9	13
49	Sheep breed and shearing influences attraction and blood-feeding behaviour of Culicoides (Diptera:) Tj ETQq1 1	0.784314 1.0	• rgBT /Over
50	Environmental Sampling as a Low-Technology Method for Surveillance of Foot-and-Mouth Disease Virus in an Area of Endemicity. Applied and Environmental Microbiology, 2018, 84, .	1.4	12
51	Systematic literature review of Rift Valley fever virus seroprevalence in livestock, wildlife and humans in Africa from 1968 to 2016. PLoS Neglected Tropical Diseases, 2018, 12, e0006627.	1.3	70
52	Blood-feeding, susceptibility to infection with Schmallenberg virus and phylogenetics of Culicoides (Diptera: Ceratopogonidae) from the United Kingdom. Parasites and Vectors, 2018, 11, 116.	1.0	18
53	Survival of African Swine Fever Virus in Excretions from Pigs Experimentally Infected with the Georgia 2007/1 Isolate. Transboundary and Emerging Diseases, 2017, 64, 425-431.	1.3	97
54	Predicting the Ability of Preclinical Diagnosis To Improve Control of Farm-to-Farm Foot-and-Mouth Disease Transmission in Cattle. Journal of Clinical Microbiology, 2017, 55, 1671-1681.	1.8	24

#	Article	IF	CITATIONS
55	Bayesian inference of epidemiological parameters from transmission experiments. Scientific Reports, 2017, 7, 16774.	1.6	27
56	Evaluation of a polyvalent foot-and-mouth disease virus vaccine containing A Saudi-95 against field challenge on large-scale dairy farms in Saudi Arabia with the emerging A/ASIA/G-VII viral lineage. Vaccine, 2017, 35, 6850-6857.	1.7	24
57	Quantifying the roles of host movement and vector dispersal in the transmission of vector-borne diseases of livestock. PLoS Computational Biology, 2017, 13, e1005470.	1.5	30
58	A Comparison of Dynamics in Two Models for the Spread of a Vector-Borne Disease. Transboundary and Emerging Diseases, 2016, 63, 215-223.	1.3	3
59	Mass vaccination, immunity and coverage: modelling population protection against foot-and-mouth disease in Turkish cattle. Scientific Reports, 2016, 6, 22121.	1.6	25
60	Using shared needles for subcutaneous inoculation can transmit bluetongue virus mechanically between ruminant hosts. Scientific Reports, 2016, 6, 20627.	1.6	30
61	Experimental pig-to-pig transmission dynamics for African swine fever virus, Georgia 2007/1 strain. Epidemiology and Infection, 2016, 144, 25-34.	1.0	77
62	Type I and III IFNs Produced by Plasmacytoid Dendritic Cells in Response to a Member of the FlaviviridaeSuppress Cellular Immune Responses. Journal of Immunology, 2016, 196, 4214-4226.	0.4	25
63	An <i>ex-ante</i> economic appraisal of Bluetongue virus incursions and control strategies. Journal of Agricultural Science, 2016, 154, 118-135.	0.6	9
64	Differential Persistence of Foot-and-Mouth Disease Virus in African Buffalo Is Related to Virus Virulence. Journal of Virology, 2016, 90, 5132-5140.	1.5	59
65	The B-cell response to foot-and-mouth-disease virus in cattle following vaccination and live-virus challenge. Journal of General Virology, 2016, 97, 2201-2209.	1.3	8
66	A comparison of commercial light-emitting diode baited suction traps for surveillance of Culicoides in northern Europe. Parasites and Vectors, 2015, 8, 239.	1.0	21
67	Can insecticide-treated netting provide protection for Equids from Culicoides biting midges in the United Kingdom?. Parasites and Vectors, 2015, 8, 604.	1.0	19
68	Virus Excretion from Foot-And-Mouth Disease Virus Carrier Cattle and Their Potential Role in Causing New Outbreaks. PLoS ONE, 2015, 10, e0128815.	1.1	57
69	Testing of UK Populations of Culex pipiens L. for Schmallenberg Virus Vector Competence and Their Colonization. PLoS ONE, 2015, 10, e0134453.	1.1	29
70	Using Mathematical Modelling to Explore Hypotheses about the Role of Bovine Epithelium Structure in Foot-And-Mouth Disease Virus-Induced Cell Lysis. PLoS ONE, 2015, 10, e0138571.	1.1	5
71	Randomised field trial to evaluate serological response after foot-and-mouth disease vaccination in Turkey. Vaccine, 2015, 33, 805-811.	1.7	26
72	Antiserum from mice vaccinated with modified vaccinia Ankara virus expressing African horse sickness virus (AHSV) VP2 provides protection when it is administered 48h before, or 48h after challenge. Antiviral Research, 2015, 116, 27-33.	1.9	20

#	Article	IF	CITATIONS
73	Cattle NK Cell Heterogeneity and the Influence of MHC Class I. Journal of Immunology, 2015, 195, 2199-2206.	0.4	20
74	Evidence for Transmission of Bluetongue Virus Serotype 26 through Direct Contact. PLoS ONE, 2014, 9, e96049.	1.1	90
75	Environmental Drivers of Culicoides Phenology: How Important Is Species-Specific Variation When Determining Disease Policy?. PLoS ONE, 2014, 9, e111876.	1.1	35
76	Retrospective evaluation of foot-and-mouth disease vaccine effectiveness in Turkey. Vaccine, 2014, 32, 1848-1855.	1.7	45
77	Veterinary and human vaccine evaluation methods. Proceedings of the Royal Society B: Biological Sciences, 2014, 281, 20132839.	1.2	53
78	Transmission of foot-and-mouth disease virus from experimentally infected Indian buffalo (Bubalus) Tj ETQq0 0	0 rgBT /Ov	verlock 10 Tf 5
79	Vaccination of horses with a recombinant modified vaccinia Ankara virus (MVA) expressing African horse sickness (AHS) virus major capsid protein VP2 provides complete clinical protection against challenge. Vaccine, 2014, 32, 3670-3674.	1.7	43
80	Vaccination of mice with a modified Vaccinia Ankara (MVA) virus expressing the African horse sickness virus (AHSV) capsid protein VP2 induces virus neutralising antibodies that confer protection against AHSV upon passive immunisation. Virus Research, 2014, 180, 23-30.	1.1	26
81	Inferences about the transmission of Schmallenberg virus within and between farms. Preventive Veterinary Medicine, 2014, 116, 380-390.	0.7	30
82	Does covering of farm-associated Culicoides larval habitat reduce adult populations in the United Kingdom?. Veterinary Parasitology, 2014, 201, 137-145.	0.7	17
83	Modelling the continental-scale spread of Schmallenberg virus in Europe: Approaches and challenges. Preventive Veterinary Medicine, 2014, 116, 404-411.	0.7	18
84	Investigating Incursions of Bluetongue Virus Using a Model of Long-DistanceCulicoidesBiting Midge Dispersal. Transboundary and Emerging Diseases, 2013, 60, 263-272.	1.3	62
85	A Bayesian framework to assess the potential for controlling classical scrapie in sheep flocks using a live diagnostic test. Epidemics, 2013, 5, 123-130.	1.5	1
86	CD4+ T-cell responses to foot-and-mouth disease virus in vaccinated cattle. Journal of General Virology, 2013, 94, 97-107.	1.3	46
87	Where are the horses? With the sheep or cows? Uncertain host location, vector-feeding preferences and the risk of African horse sickness transmission in Great Britain. Journal of the Royal Society Interface, 2013, 10, 20130194.	1.5	42
88	Implicating Culicoides Biting Midges as Vectors of Schmallenberg Virus Using Semi-Quantitative RT-PCR. PLoS ONE, 2013, 8, e57747.	1.1	75
89	The accuracy of the National Equine Database in relation to vector-borne disease risk modelling of horses in Great Britain. Equine Veterinary Journal, 2013, 45, 302-308.	0.9	11
90	Comparison of pre-emptive and reactive strategies to control an incursion of bluetongue virus serotype 1 to Great Britain by vaccination. Epidemiology and Infection, 2013, 141, 102-114.	1.0	13

#	Article	IF	CITATIONS
91	Protection of IFNAR (â^'/â^') Mice against Bluetongue Virus Serotype 8, by Heterologous (DNA/rMVA) and Homologous (rMVA/rMVA) Vaccination, Expressing Outer-Capsid Protein VP2. PLoS ONE, 2013, 8, e60574.	1.1	42
92	Measurement of the Infection and Dissemination of Bluetongue Virus in Culicoides Biting Midges Using a Semi-Quantitative RT-PCR Assay and Isolation of Infectious Virus. PLoS ONE, 2013, 8, e70800.	1.1	50
93	Investigation of Diel Activity of <i>Culicoides</i> Biting Midges (Diptera: Ceratopogonidae) in the United Kingdom by Using a Vehicle-Mounted Trap. Journal of Medical Entomology, 2012, 49, 757-765.	0.9	27
94	Assessment of T-dependent and T-independent immune responses in cattle using a B cell ELISPOT assay. Veterinary Research, 2012, 43, 68.	1.1	16
95	Immune Responses in Pigs Vaccinated with Adjuvanted and Non-Adjuvanted A(H1N1)pdm/09 Influenza Vaccines Used in Human Immunization Programmes. PLoS ONE, 2012, 7, e32400.	1.1	21
96	Scaling from challenge experiments to the field: Quantifying the impact of vaccination on the transmission of bluetongue virus serotype 8. Preventive Veterinary Medicine, 2012, 105, 297-308.	0.7	20
97	IL-6 production following vaccination in pigs—An additional immune response parameter for assessing FMD vaccine efficacy?. Vaccine, 2011, 29, 4704-4708.	1.7	9
98	Temperature Dependence of the Extrinsic Incubation Period of Orbiviruses in Culicoides Biting Midges. PLoS ONE, 2011, 6, e27987.	1.1	104
99	Influence of season and meteorological parameters on flight activity of <i>Culicoides</i> biting midges. Journal of Applied Ecology, 2011, 48, 1355-1364.	1.9	85
100	Demographic characteristics of scrapie-affected holdings identified by active and passive surveillance schemes in Great Britain: 2002–2005. Veterinary Journal, 2011, 187, 207-211.	0.6	4
101	Cattle remain immunocompetent during the acute phase of foot-and-mouth disease virus infection. Veterinary Research, 2011, 42, 108.	1.1	18
102	Quantitative assessment of the probability of bluetongue virus overwintering by horizontal transmission: application to Germany. Veterinary Research, 2011, 42, 4.	1.1	20
103	Normal variation in thermal radiated temperature in cattle: implications for foot-and-mouth disease detection. BMC Veterinary Research, 2011, 7, 73.	0.7	77
104	In-vitro and in-vivo phenotype of type Asia 1 foot-and-mouth disease viruses utilizing two non-RGD receptor recognition sites. BMC Microbiology, 2011, 11, 154.	1.3	17
105	Relationship Between Clinical Signs and Transmission of an Infectious Disease and the Implications for Control. Science, 2011, 332, 726-729.	6.0	129
106	Bovine Plasmacytoid Dendritic Cells Are the Major Source of Type I Interferon in Response to Foot-and-Mouth Disease Virus In Vitro and In Vivo. Journal of Virology, 2011, 85, 4297-4308.	1.5	41
107	The impact of sheep breed on the risk of classical scrapie. Epidemiology and Infection, 2010, 138, 384-392.	1.0	4
108	The Spread of Bluetongue Virus Serotype 8 in Great Britain and Its Control by Vaccination. PLoS ONE, 2010, 5, e9353.	1.1	60

#	Article	IF	CITATIONS
109	Assessing the consequences of an incursion of a vector-borne disease. Epidemics, 2010, 2, 148-154.	1.5	17
110	Assessing the consequences of an incursion of a vector-borne disease. II. Spread of bluetongue in Scotland and impact of vaccination. Epidemics, 2010, 2, 139-147.	1.5	22
111	The role of mathematical modelling in understanding the epidemiology and control of sheep transmissible spongiform encephalopathies: a review. Veterinary Research, 2010, 41, 42.	1.1	7
112	Foot-and-Mouth Disease Virus Can Induce a Specific and Rapid CD4 ⁺ T-Cell-Independent Neutralizing and Isotype Class-Switched Antibody Response in Nail^ve Cattle. Journal of Virology, 2009, 83, 3626-3636.	1.5	76
113	Transplacental Transmission of Bluetongue Virus 8 in Cattle, UK. Emerging Infectious Diseases, 2009, 15, 2025-2028.	2.0	55
114	The effect of vaccination on undetected persistence of foot-and-mouth disease virus in cattle herds and sheep flocks. Epidemiology and Infection, 2009, 137, 1494-1504.	1.0	10
115	Associations between lamb survival and prion protein genotype: analysis of data for ten sheep breeds in Great Britain. BMC Veterinary Research, 2009, 5, 3.	0.7	12
116	Prevalence of sheep infected with classical scrapie in Great Britain, 1993–2007. Epidemiology and Infection, 2009, 137, 787-791.	1.0	12
117	Quantifying the Risk of Localised Animal Movement Bans for Foot-and-Mouth Disease. PLoS ONE, 2009, 4, e5481.	1.1	19
118	A Modeling Framework to Describe the Transmission of Bluetongue Virus within and between Farms in Great Britain. PLoS ONE, 2009, 4, e7741.	1.1	85
119	Implications of Conflicting Associations of the Prion Protein (PrP) Gene with Scrapie Susceptibility and Fitness on the Persistence of Scrapie. PLoS ONE, 2009, 4, e7970.	1.1	4
120	No temporal trends in the prevalence of atypical scrapie in British sheep, 2002–2006. BMC Veterinary Research, 2008, 4, 13.	0.7	28
121	An assessment of <i>Culicoides</i> surveillance techniques in northern Europe: have we underestimated a potential bluetongue virus vector?. Journal of Applied Ecology, 2008, 45, 1237-1245.	1.9	67
122	Foot-and-mouth disease: Measurements of aerosol emission from pigs as a function of virus strain and initial dose. Veterinary Journal, 2008, 177, 374-380.	0.6	12
123	Assessing the risk of bluetongue to UK livestock: uncertainty and sensitivity analyses of a temperature-dependent model for the basic reproduction number. Journal of the Royal Society Interface, 2008, 5, 363-371.	1.5	166
124	Prevalence of sheep infected with classical scrapie in Great Britain: integrating multiple sources of surveillance data for 2002. Journal of the Royal Society Interface, 2008, 5, 1343-1351.	1.5	13
125	Clinical and laboratory investigations of the outbreaks of footâ€andâ€mouth disease in southern England in 2007. Veterinary Record, 2008, 163, 139-147.	0.2	43
126	Epidemiological Characteristics of Classical Scrapie Outbreaks in 30 Sheep Flocks in the United Kingdom. PLoS ONE, 2008, 3, e3994.	1.1	21

#	Article	IF	CITATIONS
127	Mortality and case fatality during the recurrence of BTVâ€8Âin northern Europe in 2007. Veterinary Record, 2007, 161, 571-572.	0.2	32
128	Reduction of foot-and-mouth disease (FMD) virus load in nasal excretions, saliva and exhaled air of vaccinated pigs following direct contact challenge. Vaccine, 2007, 25, 7806-7817.	1.7	32
129	Evaluating the Performance of Chemical Control in the Presence of Resistant Pathogens. Bulletin of Mathematical Biology, 2007, 69, 525-537.	0.9	23
130	Application of non-structural protein antibody tests in substantiating freedom from foot-and-mouth disease virus infection after emergency vaccination of cattle. Vaccine, 2006, 24, 6503-6512.	1.7	99
131	The time-course of a scrapie outbreak. BMC Veterinary Research, 2006, 2, 20.	0.7	5
132	Flock-level risk factors for scrapie in Great Britain: analysis of a 2002 anonymous postal survey. BMC Veterinary Research, 2006, 2, 25.	0.7	21
133	Analysis of clinical signs associated with bovine spongiform encephalopathy in casualty slaughter cattle. Veterinary Journal, 2006, 171, 438-444.	0.6	14
134	Breeding programmes for TSE resistance in British sheep. Preventive Veterinary Medicine, 2006, 73, 17-31.	0.7	20
135	Breeding programmes for TSE resistance in British sheep. Preventive Veterinary Medicine, 2006, 73, 1-16.	0.7	29
136	Descriptive analysis of the results of an anonymous postal survey of the occurrence of scrapie in Great Britain in 2002. Veterinary Record, 2006, 158, 501-506.	0.2	19
137	Results of a postal survey of scrapie in the Shetland Islands in 2003. Veterinary Record, 2006, 158, 255-260.	0.2	9
138	Development and Evaluation of an Indirect Enzyme-Linked Immunosorbent Assay for Detection of Foot-and-Mouth Disease Virus Nonstructural Protein Antibody using a Chemically Synthesized 2B Peptide as Antigen. Journal of Veterinary Diagnostic Investigation, 2006, 18, 545-552.	0.5	33
139	Monitoring for bovine spongiform encephalopathy in sheep in Great Britain, 1998–2004. Journal of General Virology, 2006, 87, 2099-2107.	1.3	62
140	A modelling framework to describe the spread of scrapie between sheep flocks in Great Britain. Preventive Veterinary Medicine, 2005, 67, 143-155.	0.7	24
141	Simulation of the options for a national control programme to eradicate scrapie from Great Britain. Preventive Veterinary Medicine, 2005, 69, 175-187.	0.7	16
142	Prevalence of scrapie in sheep in Great Britain estimated from abattoir surveys during 2002 and 2003. Veterinary Record, 2005, 157, 418-419.	0.2	25
143	Frequencies of PrP genotypes in 38 breeds of sheep sampled in the National Scrapie Plan for Great Britain. Veterinary Record, 2005, 156, 433-437.	0.2	44
144	Invasion of drug and pesticide resistance is determined by a trade-off between treatment efficacy and relative fitness. Bulletin of Mathematical Biology, 2004, 66, 825-840.	0.9	34

#	Article	IF	CITATIONS
145	Prevalence of scrapie infection in Great Britain: interpreting the results of the 1997–1998 abattoir survey. Proceedings of the Royal Society B: Biological Sciences, 2003, 270, 1919-1924.	1.2	12
146	Searching for BSE in sheep: interpreting the results so far. Veterinary Record, 2003, 152, 298-299.	0.2	18
147	Results of a postal survey in 2002 into the occurrence of scrapie in Great Britain. Veterinary Record, 2003, 153, 782-3.	0.2	19
148	Extinction times for closed epidemics: the effects of host spatial structure. Ecology Letters, 2002, 5, 747-755.	3.0	58
149	Invasion and persistence of plant parasites in a spatially structured host population. Oikos, 2001, 94, 162-174.	1.2	67
150	Population Dynamics of Plant–Parasite Interactions: Thresholds for Invasion. Theoretical Population Biology, 2000, 57, 219-233.	0.5	40
151	Invasion thresholds for fungicide resistance: deterministic and stochastic analyses. Proceedings of the Royal Society B: Biological Sciences, 1999, 266, 2539-2549.	1.2	37
152	A test of heterogeneous mixing as a mechanism for ecological persistence in a disturbed environment. Proceedings of the Royal Society B: Biological Sciences, 1997, 264, 227-232.	1.2	33
153	Analysis and fitting of an SIR model with host response to infection load for a plant disease. Philosophical Transactions of the Royal Society B: Biological Sciences, 1997, 352, 353-364.	1.8	46
154	Biological control in a disturbed environment. Philosophical Transactions of the Royal Society B: Biological Sciences, 1997, 352, 1935-1949.	1.8	29
155	Persistence of Host-parasite Interactions in a Disturbed Environment. Journal of Theoretical Biology, 1997, 188, 241-258.	0.8	30