Guanxing Huang

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7438317/publications.pdf

Version: 2024-02-01

430874 377865 1,310 43 18 34 citations g-index h-index papers 43 43 43 1093 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Impact of anthropogenic and natural processes on the evolution of groundwater chemistry in a rapidly urbanized coastal area, South China. Science of the Total Environment, 2013, 463-464, 209-221.	8.0	215
2	Heavy metal(loid)s and organic contaminants in groundwater in the Pearl River Delta that has undergone three decades of urbanization and industrialization: Distributions, sources, and driving forces. Science of the Total Environment, 2018, 635, 913-925.	8.0	101
3	Driving mechanism and sources of groundwater nitrate contamination in the rapidly urbanized region of south China. Journal of Contaminant Hydrology, 2015, 182, 221-230.	3.3	92
4	A regional scale investigation on factors controlling the groundwater chemistry of various aquifers in a rapidly urbanized area: A case study of the Pearl River Delta. Science of the Total Environment, 2018, 625, 510-518.	8.0	87
5	Groundwater quality in the Pearl River Delta after the rapid expansion of industrialization and urbanization: Distributions, main impact indicators, and driving forces. Journal of Hydrology, 2019, 577, 124004.	5.4	86
6	Effect of co-existing kaolinite and goethite on the aggregation of graphene oxide in the aquatic environment. Water Research, 2016, 102, 313-320.	11.3	72
7	Removal of heavy metals in aquatic environment by graphene oxide composites: a review. Environmental Science and Pollution Research, 2020, 27, 190-209.	5.3	70
8	Distributions and origins of nitrate, nitrite, and ammonium in various aquifers in an urbanized coastal area, south China. Journal of Hydrology, 2020, 582, 124528.	5.4	63
9	Elevated manganese concentrations in shallow groundwater of various aquifers in a rapidly urbanized delta, south China. Science of the Total Environment, 2020, 701, 134777.	8.0	62
10	A review of reactive media within permeable reactive barriers for the removal of heavy metal(loid)s in groundwater: Current status and future prospects. Journal of Cleaner Production, 2021, 319, 128644.	9.3	54
11	Groundwater is important for the geochemical cycling of phosphorus in rapidly urbanized areas: a case study in the Pearl River Delta. Environmental Pollution, 2020, 260, 114079.	7.5	50
12	Spatial distribution and origin of shallow groundwater iodide in a rapidly urbanized delta: A case study of the Pearl River Delta. Journal of Hydrology, 2020, 585, 124860.	5.4	38
13	Impact of human activity and natural processes on groundwater arsenic in an urbanized area (South) Tj ETQq1 1 (21, 13043-13054.	0.784314 i 5.3	rgBT /Ove <mark>·lo</mark> 33
14	Effect of sample pretreatment on the fractionation of arsenic in anoxic soils. Environmental Science and Pollution Research, 2015, 22, 8367-8374.	5.3	27
15	Changes of arsenic fractionation and bioaccessibility in wastewater-irrigated soils as a function of aging: Influence of redox condition and arsenic load. Geoderma, 2016, 280, 1-7.	5.1	25
16	Distribution of arsenic in sewage irrigation area of Pearl River Delta, China. Journal of Earth Science (Wuhan, China), 2011, 22, 396-410.	3.2	23
17	Natural background levels in groundwater in the Pearl River Delta after the rapid expansion of urbanization: A new pre-selection method. Science of the Total Environment, 2022, 813, 151890.	8.0	23
18	A sharp contrasting occurrence of iron-rich groundwater in the Pearl River Delta during the past dozen years (2006–2018): The genesis and mitigation effect. Science of the Total Environment, 2022, 829, 154676.	8.0	20

#	Article	IF	Citations
19	Impact of temperature on the aging mechanisms of arsenic in soils: fractionation and bioaccessibility. Environmental Science and Pollution Research, 2016, 23, 4594-4601.	5.3	19
20	The bioaccessibility and fractionation of arsenic in anoxic soils as a function of stabilization using low-cost Fe/Al-based materials: A long-term experiment. Ecotoxicology and Environmental Safety, 2020, 191, 110210.	6.0	17
21	Adsorption of arsenite onto a soil irrigated by sewage. Journal of Geochemical Exploration, 2013, 132, 164-172.	3.2	16
22	Geochemical factors controlling natural background levels of phosphate in various groundwater units in a large-scale urbanized area. Journal of Hydrology, 2022, 608, 127594.	5.4	16
23	Levels and sources of phthalate esters in shallow groundwater and surface water of Dongguan city, South China. Geochemical Journal, 2012, 46, 421-428.	1.0	14
24	Water quality assessment and hydrochemical characteristics of groundwater on the aspect of metals in an old town, Foshan, south China. Journal of Earth System Science, 2014, 123, 91-100.	1.3	14
25	Distributions, origins, and health-risk assessment of nitrate in groundwater in typical alluvial-pluvial fans, North China Plain. Environmental Science and Pollution Research, 2022, 29, 17031-17048.	5.3	14
26	Water Quality Assessment and Hydrochemical Characteristics of Shallow Groundwater in Eastern Chancheng District, Foshan, China. Water Environment Research, 2013, 85, 354-362.	2.7	8
27	Distribution of arsenic in shallow aquifers of Guangzhou region, China: natural and anthropogenic impacts. Water Quality Research Journal of Canada, 2014, 49, 354-371.	2.7	7
28	A New Evaluation Method for Groundwater Quality Applied in Guangzhou Region, China: Using Fuzzy Method Combining Toxicity Index. Water Environment Research, 2016, 88, 99-106.	2.7	7
29	Groundwater quality in aquifers affected by the anthropogenic and natural processes in an urbanized area, south China. Environmental Forensics, 2016, 17, 107-119.	2.6	7
30	Identification of Groundwater Contamination in a Rapidly Urbanized Area on a Regional Scale: A New Approach of Multi-Hydrochemical Evidences. International Journal of Environmental Research and Public Health, 2021, 18, 12143.	2.6	7
31	Groundwater Level Mapping Using Multiple-Point Geostatistics. Water (Switzerland), 2016, 8, 400.	2.7	4
32	The Characterization of Microbial Communities Response to Shallow Groundwater Contamination in Typical Piedmont Region of Taihang Mountains in the North China Plain. Water (Switzerland), 2019, 11, 736.	2.7	4
33	Heavy Metal Contamination and Potential Ecological Risk Assessment of Sediments in Yangzonghai Lake. , 2010, , .		3
34	Arsenic distribution and hydrochemical factors in urban groundwater, Foshan City, South China. Diqiu Huaxue, 2014, 33, 398-403.	0.5	3
35	Natural Background Levels of Fe and Mn in Groundwater of Pearl River Delta. , 2010, , .		2
36	Distribution and Mobility of Heavy Metals in Soil of Sewage Irrigation Area in Pearl River Delta, China. , 2010, , .		2

3

#	Article	IF	CITATIONS
37	Characteristic and Speciation of Beryllium in Shallow Groundwater in the Pearl River Delta. , 2010, , .		2
38	The Aging Process of Cadmium in Paddy Soils under Intermittent Irrigation with Acid Water: A Short-Term Simulation Experiment. International Journal of Environmental Research and Public Health, 2022, 19, 3339.	2.6	2
39	Groundwater pollution of Pearl River Delta. , 2021, , 251-260.		1
40	Level and Chemical Forms of Lead in Soil of Sewage Irrigation Area in Guangdong Province, South China. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0
41	Distribution of Heavy Metals in Groundwater of Sewage Irrigation Area in Guangdong Province, China. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	O
42	Relationship and Enrichment of Heavy Metals in Soil of Sewage Irrigation Area in Guangdong Province, China. International Conference on Bioinformatics and Biomedical Engineering: [proceedings] International Conference on Bioinformatics and Biomedical Engineering, 2010, , .	0.0	0
43	Notice of Retraction: Characteristic and Speciation of pH in Shallow Groundwater in the Pearl River Delta. , 2011, , .		0