## Haibo Zhu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7437644/publications.pdf Version: 2024-02-01



ΗλιβΟ ΖΗΠ

| #  | Article                                                                                                                                                                                                                                         | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Magnetically Recoverable Nanocatalysts. Chemical Reviews, 2011, 111, 3036-3075.                                                                                                                                                                 | 47.7 | 1,535     |
| 2  | Production of Sulfate Radical from Peroxymonosulfate Induced by a Magnetically Separable<br>CuFe <sub>2</sub> O <sub>4</sub> Spinel in Water: Efficiency, Stability, and Mechanism. Environmental<br>Science & Technology, 2013, 47, 2784-2791. | 10.0 | 960       |
| 3  | Carbon-Layer-Protected Cuprous Oxide Nanowire Arrays for Efficient Water Reduction. ACS Nano, 2013, 7, 1709-1717.                                                                                                                               | 14.6 | 380       |
| 4  | Electrochemical reduction induced self-doping of Ti3+ for efficient water splitting performance on TiO2 based photoelectrodes. Physical Chemistry Chemical Physics, 2013, 15, 15637.                                                            | 2.8  | 174       |
| 5  | Nanosized CaCO <sub>3</sub> as Hard Template for Creation of Intracrystal Pores within Silicalite-1<br>Crystal. Chemistry of Materials, 2008, 20, 1134-1139.                                                                                    | 6.7  | 157       |
| 6  | Sn surface-enriched Pt–Sn bimetallic nanoparticles as a selective and stable catalyst for propane dehydrogenation. Journal of Catalysis, 2014, 320, 52-62.                                                                                      | 6.2  | 144       |
| 7  | Synthesis of single-crystal-like nanoporous carbon membranes and their application in overall water splitting. Nature Communications, 2017, 8, 13592.                                                                                           | 12.8 | 142       |
| 8  | Propane Dehydrogenation over Pt Clusters Localized at the Sn Single-Site in Zeolite Framework. ACS Catalysis, 2020, 10, 818-828.                                                                                                                | 11.2 | 136       |
| 9  | Ni–M–O (M = Sn, Ti, W) Catalysts Prepared by a Dry Mixing Method for Oxidative Dehydrogenation of<br>Ethane. ACS Catalysis, 2016, 6, 2852-2866.                                                                                                 | 11.2 | 120       |
| 10 | Metal oxides modified NiO catalysts for oxidative dehydrogenation of ethane to ethylene. Catalysis<br>Today, 2014, 228, 58-64.                                                                                                                  | 4.4  | 100       |
| 11 | Nb effect in the nickel oxide-catalyzed low-temperature oxidative dehydrogenation of ethane. Journal of Catalysis, 2012, 285, 292-303.                                                                                                          | 6.2  | 84        |
| 12 | Synthesis and Catalytic Performances of Mesoporous Zeolites Templated by Polyvinyl Butyral Gel as the Mesopore Directing Agent. Journal of Physical Chemistry C, 2008, 112, 17257-17264.                                                        | 3.1  | 78        |
| 13 | Surface modification of g-C3N4 by hydrazine: Simple way for noble-metal free hydrogen evolution catalysts. Chemical Engineering Journal, 2016, 286, 339-346.                                                                                    | 12.7 | 67        |
| 14 | Direct synthesis of hierarchical SAPO-11 molecular sieve with enhanced hydroisomerization performance. Fuel Processing Technology, 2018, 179, 72-85.                                                                                            | 7.2  | 62        |
| 15 | Synergetic Effects Leading to Cokeâ€Resistant NiCo Bimetallic Catalysts for Dry Reforming of Methane.<br>ChemCatChem, 2015, 7, 427-433.                                                                                                         | 3.7  | 58        |
| 16 | Ni–Ta–O mixed oxide catalysts for the low temperature oxidative dehydrogenation of ethane to ethylene. Journal of Catalysis, 2015, 329, 291-306.                                                                                                | 6.2  | 57        |
| 17 | Propane dehydrogenation catalyzed by single Lewis acid site in Sn-Beta zeolite. Journal of Catalysis, 2021, 395, 155-167.                                                                                                                       | 6.2  | 54        |
| 18 | Gold Nanoparticles Supported on Fibrous Silica Nanospheres (KCCâ€1) as Efficient Heterogeneous<br>Catalysts for CO Oxidation. ChemCatChem, 2016, 8, 1671-1678.                                                                                  | 3.7  | 50        |

Наіво Zhu

| #  | Article                                                                                                                                                                                                                      | IF   | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 19 | Synthesis of ZSM-5 with intracrystal or intercrystal mesopores by polyvinyl butyral templating method. Journal of Colloid and Interface Science, 2009, 331, 432-438.                                                         | 9.4  | 49        |
| 20 | Green Synthesis of Ni–Nb oxide Catalysts for Lowâ€Temperature Oxidative Dehydrogenation of Ethane.<br>ChemSusChem, 2015, 8, 1254-1263.                                                                                       | 6.8  | 49        |
| 21 | Unmodified bulk alumina as an efficient catalyst for propane dehydrogenation. Catalysis Science and<br>Technology, 2020, 10, 3537-3541.                                                                                      | 4.1  | 48        |
| 22 | Seed-assisted, template-free synthesis of ZSM-5 zeolite from natural aluminosilicate minerals. Applied<br>Clay Science, 2018, 158, 177-185.                                                                                  | 5.2  | 45        |
| 23 | Template free synthesis of hierarchical porous zeolite Beta with natural kaolin clay as alumina source. Microporous and Mesoporous Materials, 2020, 293, 109772.                                                             | 4.4  | 43        |
| 24 | Pt-Sn clusters anchored at Al3+penta sites as a sinter-resistant and regenerable catalyst for propane dehydrogenation. Journal of Energy Chemistry, 2022, 65, 293-301.                                                       | 12.9 | 38        |
| 25 | One-pot synthesis of FeCu-SSZ-13 zeolite with superior performance in selective catalytic reduction of NO by NH3 from natural aluminosilicates. Chemical Engineering Journal, 2020, 398, 125515.                             | 12.7 | 37        |
| 26 | Bimetallic Pt-Sn nanocluster from the hydrogenolysis of a well-defined surface compound consisting of [( AlO )Pt(COD)Me] and [( AlO )SnPh3] fragments for propane dehydrogenation. Journal of Catalysis, 2019, 374, 391-400. | 6.2  | 34        |
| 27 | VO <sub><i>x</i></sub> /SiO <sub>2</sub> Catalyst Prepared by Grafting VOCl <sub>3</sub> on Silica for Oxidative Dehydrogenation of Propane. ChemCatChem, 2015, 7, 3332-3339.                                                | 3.7  | 30        |
| 28 | Selective adsorption of Co(II)/Mn(II) by zeolites from purified terephthalic acid wastewater containing<br>dissolved aromatic organic compounds and metal ions. Science of the Total Environment, 2020, 698,<br>134287.      | 8.0  | 30        |
| 29 | Surface Composition of Silver Nanocubes and Their Influence on Morphological Stabilization and<br>Catalytic Performance in Ethylene Epoxidation. ACS Applied Materials & Interfaces, 2015, 7,<br>28576-28584.                | 8.0  | 28        |
| 30 | A high-throughput reactor system for optimization of Mo–V–Nb mixed oxide catalyst composition in ethane ODH. Catalysis Science and Technology, 2015, 5, 4164-4173.                                                           | 4.1  | 28        |
| 31 | Synthesis, Modification, and Application of Hollow Mesoporous Carbon Submicrospheres for<br>Adsorptive Desulfurization. Industrial & Engineering Chemistry Research, 2018, 57, 15020-15030.                                  | 3.7  | 28        |
| 32 | Template-Free Synthesis and Catalytic Applications of Microporous and Hierarchical ZSM-5 Zeolites<br>from Natural Aluminosilicate Minerals. Industrial & Engineering Chemistry Research, 2017, 56,<br>10069-10077.           | 3.7  | 26        |
| 33 | Methane Reacts with Heteropolyacids Chemisorbed on Silica to Produce Acetic Acid under Soft<br>Conditions. Journal of the American Chemical Society, 2013, 135, 804-810.                                                     | 13.7 | 24        |
| 34 | Organosilane with Gemini-Type Structure as the Mesoporogen for the Synthesis of the Hierarchical<br>Porous ZSM-5 Zeolite. Langmuir, 2016, 32, 2085-2092.                                                                     | 3.5  | 21        |
| 35 | Direct Synthesis of Hierarchical FeCuâ€ZSMâ€5 Zeolite with Wide Temperature Window in Selective<br>Catalytic Reduction of NO by NH <sub>3</sub> . ChemCatChem, 2019, 11, 4744-4754.                                          | 3.7  | 21        |
| 36 | Insights into the reaction pathway of n-butane conversion over HZSM-5 zeolite at low temperature.<br>Applied Catalysis A: General, 2019, 584, 117135.                                                                        | 4.3  | 21        |

Наіво Zhu

| #  | Article                                                                                                                                                                                                                                                                             | IF  | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 37 | A high-throughput study of the redox properties of Nb-Ni oxide catalysts by low temperature CO oxidation: Implications in ethane ODH. Catalysis Today, 2013, 203, 3-9.                                                                                                              | 4.4 | 20        |
| 38 | Controlled synthesis of ZSM-5 zeolite with an unusual Al distribution in framework from natural aluminosilicate mineral. Microporous and Mesoporous Materials, 2020, 305, 110357.                                                                                                   | 4.4 | 17        |
| 39 | Hierarchical Flower-Like NiCu/SiO <sub>2</sub> Bimetallic Catalysts with Enhanced Catalytic Activity<br>and Stability for Petroleum Resin Hydrogenation. Industrial & Engineering Chemistry Research,<br>2021, 60, 5432-5442.                                                       | 3.7 | 17        |
| 40 | Bimetallic PtSn nanoparticles confined in hierarchical ZSM-5 for propane dehydrogenation. Chinese<br>Journal of Chemical Engineering, 2022, 41, 384-391.                                                                                                                            | 3.5 | 17        |
| 41 | Selectively catalytic hydrogenation of styrene-butadiene rubber over Pd/g-C3N4 catalyst. Applied<br>Catalysis A: General, 2020, 589, 117312.                                                                                                                                        | 4.3 | 14        |
| 42 | Synthesis and structure-directing effect of piperazinium hydroxides derived from piperazines for the formation of porous zeolites. Materials Letters, 2006, 60, 2161-2166.                                                                                                          | 2.6 | 12        |
| 43 | From cheap natural bauxite to high-efficient slurry-phase hydrocracking catalyst for high<br>temperature coal tar: A simple hydrothermal modification. Fuel Processing Technology, 2018, 175,<br>123-130.                                                                           | 7.2 | 12        |
| 44 | Synthesis and catalytic application of alumina@SAPO-11 composite <i>via</i> the <i>in situ</i> assembly of silicoaluminophosphate nanoclusters at an alumina substrate. Catalysis Science and Technology, 2018, 8, 4209-4218.                                                       | 4.1 | 11        |
| 45 | Solvent Effect in Heterogeneous Catalytic Selective Hydrogenation of Nitrile Butadiene Rubber:<br>Relationship between Reaction Activity and Solvents with Density Functional Theory Analysis.<br>ChemCatChem, 2020, 12, 663-672.                                                   | 3.7 | 11        |
| 46 | Green fabrication of hierarchical zeolites from natural minerals. National Science Review, 2020, 7,<br>1632-1634.                                                                                                                                                                   | 9.5 | 11        |
| 47 | Dependence of Morphology, Dispersion and Hydrodesulfurization Performance of Active Phases in<br>NiMo/SBAâ€15 on Loading Method. ChemCatChem, 2018, 10, 3717-3725.                                                                                                                  | 3.7 | 9         |
| 48 | Effect of support morphology on the activity and reusability of Pd/SiO2 for NBR hydrogenation.<br>Journal of Materials Science, 2020, 55, 12876-12883.                                                                                                                              | 3.7 | 8         |
| 49 | Mesoscale depolymerization of natural rectorite mineral via a quasi-solid-phase approach for zeolite<br>synthesis. Chemical Engineering Science, 2020, 220, 115635.                                                                                                                 | 3.8 | 7         |
| 50 | Efficiently tailoring the pore diameter of mesoporous MCM-48 to micropore. Materials Letters, 2005, 59, 2110-2114.                                                                                                                                                                  | 2.6 | 6         |
| 51 | A general approach for the synthesis of bimetallic M–Sn (M = Ru, Rh and Ir) catalysts for efficient<br>hydrogenolysis of ester. Catalysis Science and Technology, 2017, 7, 581-586.                                                                                                 | 4.1 | 6         |
| 52 | Controllable synthesis of Ir(Rh)–Sn/SiO2 bimetallic catalysts via surface organometallic chemistry<br>for the production of ethanol from hydrogenolysis of ethyl acetate. Catalysis Science and<br>Technology, 2020, 10, 1086-1095.                                                 | 4.1 | 4         |
| 53 | In Situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy Investigations on the Evolution of Surface and Catalysis Properties of Alumina-Promoted Sulfated Zirconia during <i>n</i> Butane Isomerization. Industrial & Engineering Chemistry Research, 2020, 59, 704-712. | 3.7 | 3         |
| 54 | The controlled synthesis of Pt/Hβ catalysts with intimate metal-acid sites for n-butane isomerization.<br>Microporous and Mesoporous Materials, 2020, 309, 110547.                                                                                                                  | 4.4 | 3         |

| #  | Article                                                                                                                                                  | IF  | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 55 | Effect of various templates on the formation of mesoporous benzene-silica hybrid material. Studies in Surface Science and Catalysis, 2007, 165, 429-432. | 1.5 | 0         |