Carsten Herskind

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/743762/publications.pdf

Version: 2024-02-01

96 papers

2,974 citations

201385 27 h-index 51 g-index

105 all docs 105
docs citations

105 times ranked 3738 citing authors

#	Article	IF	CITATIONS
1	Targeting Cell Cycle Checkpoint Kinases to Overcome Intrinsic Radioresistance in Brain Tumor Cells. Cancers, 2022, 14, 701.	1.7	7
2	Use of angiotensin converting enzyme inhibitors is associated with reduced risk of late bladder toxicity following radiotherapy for prostate cancer. Radiotherapy and Oncology, 2022, 168, 75-82.	0.3	10
3	Stromal Fibroblasts Counteract the Caveolin-1-Dependent Radiation Response of LNCaP Prostate Carcinoma Cells. Frontiers in Oncology, 2022, 12, 802482.	1.3	2
4	Predicting response to neoadjuvant chemoradiotherapy in rectal cancer: from biomarkers to tumor models. Therapeutic Advances in Medical Oncology, 2022, 14, 175883592210779.	1.4	21
5	Selective inhibitors of bromodomain <scp>BD1</scp> and <scp>BD2</scp> of <scp>BET</scp> proteins modulate radiationâ€induced profibrotic fibroblast responses. International Journal of Cancer, 2022, , .	2.3	3
6	Overview of health-related quality of life and toxicity of non-small cell lung cancer patients receiving curative-intent radiotherapy in a real-life setting (the REQUITE study). Lung Cancer, 2022, 166, 228-241.	0.9	5
7	Sulfated hyaluronic acid inhibits the hyaluronidase CEMIP and regulates the HA metabolism, proliferation and differentiation of fibroblasts. Matrix Biology, 2022, 109, 173-191.	1.5	10
8	Gene Expression Profiles Reveal Extracellular Matrix and Inflammatory Signaling in Radiation-Induced Premature Differentiation of Human Fibroblast in vitro. Frontiers in Cell and Developmental Biology, 2021, 9, 539893.	1.8	7
9	Epigenetic Modulation of Radiation-Induced Diacylglycerol Kinase Alpha Expression Prevents Pro-Fibrotic Fibroblast Response. Cancers, 2021, 13, 2455.	1.7	8
10	Editorial: Cell Signaling Mediating Critical Radiation Responses. Frontiers in Oncology, 2021, 11, 695355.	1.3	0
11	Development of a method for generating SNP interaction-aware polygenic risk scores for radiotherapy toxicity. Radiotherapy and Oncology, 2021, 159, 241-248.	0.3	11
12	Intracellular Delivery of Doxorubicin by Iron Oxide-Based Nano-Constructs Increases Clonogenic Inactivation of Ionizing Radiation in HeLa Cells. International Journal of Molecular Sciences, 2021, 22, 6778.	1.8	8
13	A Deep Learning Approach Validates Genetic Risk Factors for Late Toxicity After Prostate Cancer Radiotherapy in a REQUITE Multi-National Cohort. Frontiers in Oncology, 2020, 10, 541281.	1.3	15
14	Evaluation of cytokine expression and circulating immune cell subsets as potential parameters of acute radiation toxicity in prostate cancer patients. Scientific Reports, 2020, 10, 19002.	1.6	21
15	Caveolin-1 regulates the ASMase/ceramide-mediated radiation response of endothelial cells in the context of tumor–stroma interactions. Cell Death and Disease, 2020, 11, 228.	2.7	25
16	Radiation-induced malignancies after intensity-modulated versus conventional mediastinal radiotherapy in a small animal model. Scientific Reports, 2019, 9, 15489.	1.6	4
17	Multi-centre technical evaluation of the radiation-induced lymphocyte apoptosis assay as a predictive test for radiotherapy toxicity. Clinical and Translational Radiation Oncology, 2019, 18, 1-8.	0.9	14
18	REQUITE: A prospective multicentre cohort study of patients undergoing radiotherapy for breast, lung or prostate cancer. Radiotherapy and Oncology, 2019, 138, 59-67.	0.3	53

#	Article	IF	CITATIONS
19	Targeting the Post-Irradiation Tumor Microenvironment in Glioblastoma via Inhibition of CXCL12. Cancers, 2019, 11, 272.	1.7	15
20	Progression-Related Loss of Stromal Caveolin 1 Levels Mediates Radiation Resistance in Prostate Carcinoma via the Apoptosis Inhibitor TRIAP1. Journal of Clinical Medicine, 2019, 8, 348.	1.0	23
21	A HYPOTHESIS OF RADIORESISTANCE AND CELL-SURVIVAL CURVE SHAPE BASED ON CELL-CYCLE PROGRESSION AND DAMAGE TOLERANCE. Radiation Protection Dosimetry, 2019, 183, 107-110.	0.4	1
22	Association of CD4+ Radiation-Induced Lymphocyte Apoptosis with Fibrosis and Telangiectasia after Radiotherapy in 272 Breast Cancer Patients with & Eamp; gt; 10-Year Follow-up. Clinical Cancer Research, 2019, 25, 562-572.	3.2	11
23	Intraoperative Radiotherapy in Newly Diagnosed Glioblastoma (INTRAGO): An Open-Label, Dose-Escalation Phase I/II Trial. Neurosurgery, 2019, 84, 41-49.	0.6	39
24	Radiotherapy, tumor mutational burden, and immune checkpoint inhibitors: time to do the math. Strahlentherapie Und Onkologie, 2018, 194, 873-875.	1.0	11
25	Progression-related loss of stromal Caveolin 1 levels fosters the growth of human PC3 xenografts and mediates radiation resistance. Scientific Reports, 2017, 7, 41138.	1.6	21
26	Biology of high single doses of IORT: RBE, 5 R's, and other biological aspects. Radiation Oncology, 2017, 12, 24.	1,2	37
27	BET-bromodomain inhibitors modulate epigenetic patterns at the diacylglycerol kinase alpha enhancer associated with radiation-induced fibrosis. Radiotherapy and Oncology, 2017, 125, 168-174.	0.3	9
28	Smart Radiation Therapy Biomaterials. International Journal of Radiation Oncology Biology Physics, 2017, 97, 624-637.	0.4	42
29	Immunotherapy Combined with Large Fractions of Radiotherapy: Stereotactic Radiosurgery for Brain Metastasesâ€"Implications for Intraoperative Radiotherapy after Resection. Frontiers in Oncology, 2017, 7, 147.	1.3	24
30	RTHP-05. INTRAOPERATIVE RADIOTHERAPY (IORT) USING LOW-ENERGY X-RAYS IN AÂCOHORT OF PREDOMINANTLY INCOMPLETELY RESECTED NEWLY DIAGNOSED GLIOBLASTOMA MULTIFORME (INTRAGO) Tj	ET @ q 6 0 0) rgBT /Overlo
31	Cellular Pathways in Response to Ionizing Radiation and Their Targetability for Tumor Radiosensitization. International Journal of Molecular Sciences, 2016, 17, 102.	1.8	298
32	MRI morphologic alterations after liver SBRT. Strahlentherapie Und Onkologie, 2016, 192, 641-648.	1.0	13
33	Adaptive fractionated stereotactic Gamma Knife radiotherapy ofÂmeningiomaÂusing integrated stereotactic cone-beam-CT and adaptive re-planning (a-gkFSRT). Strahlentherapie Und Onkologie, 2016, 192, 815-819.	1.0	27
34	Radiogenomics: A systems biology approach to understanding genetic risk factors for radiotherapy toxicity?. Cancer Letters, 2016, 382, 95-109.	3.2	68
35	Epigenetic regulation of diacylglycerol kinase alpha promotes radiation-induced fibrosis. Nature Communications, 2016, 7, 10893.	5.8	46
36	Correlation between DNA damage responses of skin to a test dose of radiation and late adverse effects of earlier breast radiotherapy. Radiotherapy and Oncology, 2016, 119, 244-249.	0.3	11

#	Article	IF	Citations
37	Correlation between the radiation responses of fibroblasts cultured from individual patients and the risk of late reaction after breast radiotherapy. Cancer Letters, 2016, 374, 324-330.	3.2	8
38	TGF- \hat{l}^21 Is Present at High Levels in Wound Fluid from Breast Cancer Patients Immediately Post-Surgery, and Is Not Increased by Intraoperative Radiation Therapy (IORT). PLoS ONE, 2016, 11, e0162221.	1.1	13
39	The HIV-derived protein Vpr52-96 has anti-glioma activity in vitro and in vivo. Oncotarget, 2016, 7, 45500-45512.	0.8	1
40	Accelerated Partial Breast Irradiation in Clinical Practice. Breast Care, 2015, 10, 247-252.	0.8	16
41	Impact of flattening-filter-free radiation on the clonogenic survival of astrocytic cell lines. Strahlentherapie Und Onkologie, 2015, 191, 590-596.	1.0	6
42	Endothelial Caveolin-1 regulates the radiation response of epithelial prostate tumors. Oncogenesis, 2015, 4, e148-e148.	2.1	28
43	Inhibition of 13-cis retinoic acid-induced gene expression of reactive-resistance genes by thalidomide in glioblastoma tumours <i>in vivo</i> . Oncotarget, 2015, 6, 28938-28948.	0.8	11
44	Abstract 3445: Diacylglycerol kinase alpha as a novel epigenetically regulated risk marker for radiotherapy-induced fibrosis. , 2015 , , .		0
45	Abstract 4458: The HIV-derived protein Vpr52-96has anti-glioma activity in vitro and in vivo. , 2015, , .		О
46	The Biological Effect of Large Single Doses: A Possible Role for Non-Targeted Effects in Cell Inactivation. PLoS ONE, 2014, 9, e84991.	1.1	26
47	INTRAGO: intraoperative radiotherapy in glioblastoma multiforme – a Phase I/II dose escalation study. BMC Cancer, 2014, 14, 992.	1.1	35
48	Strahlenschutz von Normalgewebszellen. Strahlentherapie Und Onkologie, 2014, 190, 745-752.	1.0	46
49	Second cancer risk after 3D-CRT, IMRT and VMAT for breast cancer. Radiotherapy and Oncology, 2014, 110, 471-476.	0.3	138
50	A method for the efficient cellular uptake and retention of small modified gold nanoparticles for the radiosensitization of cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2014, 10, 1365-1373.	1.7	30
51	The influence of retinoic Acid and thalidomide on the radiosensitivity of u343 glioblastoma cells. Anticancer Research, 2014, 34, 1885-91.	0.5	3
52	Relative Biologic Effectiveness (RBE) of 50 kV X-rays Measured in a Phantom for Intraoperative Tumor-Bed Irradiation. International Journal of Radiation Oncology Biology Physics, 2013, 85, 1127-1133.	0.4	60
53	Estimation of intracranial failure risk following hippocampal-sparing whole brain radiotherapy. Radiotherapy and Oncology, 2013, 109, 152-158.	0.3	57
54	Comparison of genetic variation of breast cancer susceptibility genes in Chinese and German populations. European Journal of Human Genetics, 2013, 21, 1286-1292.	1.4	27

#	Article	IF	CITATIONS
55	Mitogenic signalling in the absence of epidermal growth factor receptor activation in a human glioblastoma cell line. Journal of Neuro-Oncology, 2013, 115, 323-331.	1.4	8
56	Intraoperative Radiotherapy during Breast-Conserving Surgery Using a Miniature X-Ray Generator (Intrabeam \hat{A}°): Theoretical and Experimental Background and Clinical Experience. Women's Health, 2012, 8, 39-47.	0.7	13
57	Distinct role of endocytosis for Smad and non-Smad TGF- \hat{l}^2 signaling regulation in hepatocytes. Journal of Hepatology, 2011, 55, 369-378.	1.8	55
58	Inter-individual and inter-cell type variation in residual DNA damage after in vivo irradiation of human skin. Radiotherapy and Oncology, 2011, 99, 225-230.	0.3	21
59	Can the risk of secondary cancer induction after breast conserving therapy be reduced using intraoperative radiotherapy (IORT) with low-energy x-rays?. Radiation Oncology, 2011, 6, 174.	1.2	33
60	Overexpression of Manganese Superoxide Dismutase Does Not Increase Clonogenic Cell Survival Despite Effect on Apoptosis in Irradiated Lymphoblastoid Cells. Radiation Research, 2011, 176, 725-731.	0.7	6
61	Overexpression of Caveolin-1 in Lymphoblastoid TK6 Cells Enhances Proliferation After Irradiation with Clinically Relevant Doses. Strahlentherapie Und Onkologie, 2010, 186, 99-106.	1.0	20
62	Radiobiological Comparison of Hypofractionated Accelerated Partial-Breast Irradiation (APBI) and Single-Dose Intraoperative Radiotherapy (IORT) with 50-kV X-Rays. Strahlentherapie Und Onkologie, 2010, 186, 444-451.	1.0	25
63	Establishment of a Radiogenomics Consortium. International Journal of Radiation Oncology Biology Physics, 2010, 76, 1295-1296.	0.4	118
64	SNAI2 as a Novel Radioprotector of Normal Tissue by Gene Transfer Using a Lentiviral Bicistronic SIN Vector. Radiation Research, 2010, 173, 612-619.	0.7	21
65	Is There More to Intraoperative Radiotherapy Than Physical Dose?. International Journal of Radiation Oncology Biology Physics, 2009, 74, 976-977.	0.4	11
66	Normal-Tissue Radioprotection by Overexpression of the Copper-Zinc and Manganese Superoxide Dismutase Genes. Strahlentherapie Und Onkologie, 2009, 185, 517-523.	1.0	18
67	Volumetric modulated arc therapy (VMAT) vs. serial tomotherapy, step-and-shoot IMRT and 3D-conformal RT for treatment of prostate cancer. Radiotherapy and Oncology, 2009, 93, 226-233.	0.3	324
68	Sphere of Equivalenceâ€"A Novel Target Volume Concept for Intraoperative Radiotherapy Using Low-Energy X Rays. International Journal of Radiation Oncology Biology Physics, 2008, 72, 1575-1581.	0.4	53
69	Early initiation of external beam radiotherapy (EBRT) may increase the risk of long-term toxicity in patients undergoing intraoperative radiotherapy (IORT) as a boost for breast cancer. Breast, 2008, 17, 617-622.	0.9	58
70	<i>MDR1</i> Gene Transfer Using a Lentiviral SIN Vector Confers Radioprotection to Human CD34 ⁺ Hematopoietic Progenitor Cells. Radiation Research, 2008, 169, 301-310.	0.7	29
71	Inhibition of 13-cis retinoic acid-induced gene expression of homeobox B7 by thalidomide. International Journal of Cancer, 2007, 121, 1205-1211.	2.3	6
72	ATM sequence variants and risk of radiation-induced subcutaneous fibrosis after postmastectomy radiotherapy. International Journal of Radiation Oncology Biology Physics, 2006, 64, 776-783.	0.4	95

#	Article	IF	Citations
73	Long-term toxicity of an intraoperative radiotherapy boost using low energy X-rays during breast-conserving surgery. International Journal of Radiation Oncology Biology Physics, 2006, 66, 377-381.	0.4	75
74	Changes in telomerase activity after irradiation of human peripheral blood mononuclear cells (PBMC) in vitro. Radiation Protection Dosimetry, 2006, 122, 173-175.	0.4	1
75	Overexpression of MDR1Using a Retroviral Vector Differentially Regulates Genes Involved in Detoxification and Apoptosis and Confers Radioprotection. Radiation Research, 2006, 166, 463-473.	0.7	25
76	Lentiviral MDR1 Gene Transfer Confers Radioprotection to Human CD34(+) Haematopoietic Progenitor Cells Blood, 2006, 108, 5470-5470.	0.6	0
77	TGFB1 polymorphisms are associated with risk of late normal tissue complications in the breast after radiotherapy for early breast cancer. Radiotherapy and Oncology, 2005, 75, 18-21.	0.3	125
78	Radiobiological Aspects of Intraoperative Radiotherapy (IORT) with Isotropic Low-Energy X Rays for Early-Stage Breast Cancer. Radiation Research, 2005, 163, 208-215.	0.7	94
79	Microarray Analysis of Differentially Expressed Genes in Response to Retrovirally Mediated Overexpression of MDR1 Blood, 2005, 106, 1519-1519.	0.6	4
80	Induction and repair of radiation-induced DNA double-strand breaks in human fibroblasts are not affected by terminal differentiation. DNA Repair, 2004, 3, 113-120.	1.3	13
81	Recombinant adeno-associated virus 2-mediated transfer of the human superoxide-dismutase gene does not confer radioresistance on HeLa cervical carcinoma cells. Radiotherapy and Oncology, 2004, 72, 341-350.	0.3	17
82	Spatial Variation of Radiation Quality during Moving Beam Therapy with 14 MeV [d(0.25)+T] Neutrons. Radiation Protection Dosimetry, 2002, 99, 365-368.	0.4	1
83	Differential response of tumor cells and normal fibroblasts to fractionated combined treatment with topotecan and ionizing radiation. International Journal of Radiation Biology, 2002, 78, 125-132.	1.0	4
84	Spontaneous and radiation-induced differentiationof fibroblasts. Experimental Gerontology, 2000, 35, 747-755.	1.2	64
85	Fibroblast Differentiation in Subcutaneous Fibrosis after Postmastectomy Radiotherapy. Acta Oncológica, 2000, 39, 383-388.	0.8	40
86	Radiation sensitivity of human squamous cell carcinoma cells in vitro is modulated by all-trans and 13-cis-retinoic acid in combination with interferon- \hat{l}_{\pm} . International Journal of Radiation Oncology Biology Physics, 1999, 45, 991-998.	0.4	27
87	Changes in RBE of 14-MeV (d+T) neutrons for V79 cells irradiated in air and in a phantom: Is RBE enhanced near the surface?. Strahlentherapie Und Onkologie, 1998, 174, 204-211.	1.0	7
88	Differentiation state of skin fibroblast cultures versus risk of subcutaneous fibrosis after radiotherapy. Radiotherapy and Oncology, 1998, 47, 263-269.	0.3	56
89	Growth-State-Dependent Radiation-Induced Expression of the Proto-oncogene c-fos in NIH 3T3 Cells. Radiation Research, 1996, 145, 299.	0.7	3
90	Inactivation of DNA-mediated transformation of hamster cells by \hat{I}^3 -rays and deoxyribonuclease I. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1988, 198, 169-178.	0.4	4

#	Article	IF	CITATIONS
91	Sulfhydryl Protection and the Oxygen Effect on Radiation-Induced Inactivation of r-Chromatin in Vitro: Influence of an OH Scavenger: t-Butanol. Radiation Research, 1988, 115, 141.	0.7	3
92	Variable Protection by OH Scavengers against Radiation-Induced Inactivation of Isolated Transcriptionally Active Chromatin: The Influence of Secondary Radicals. Radiation Research, 1988, 114, 28.	0.7	14
93	Single-strand Breaks can Lead to Complex Configurations of Plasmid DNA <i>in Vitro</i> . International Journal of Radiation Biology and Related Studies in Physics, Chemistry, and Medicine, 1987, 52, 565-575.	1.0	14
94	Inactivation of a Single Eucaryotic Gene Irradiated in Vitro in Transcriptionally Active Chromatin Form. Radiation Research, 1986, 106, 331.	0.7	6
95	Molecular events on the chromatin form of an isolated specific eukaryotic gene in response to radiation. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1982, 96, 134.	0.4	O
96	The Crystal Structure of trans-Dichlorobis(ethylenediamine)-platinum(IV) Tetrachlorocuprate(II) Monohydrate Acta Chemica Scandinavica, 1975, 29a, 499-504.	0.7	9