Anna A Birukova

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7437217/publications.pdf

Version: 2024-02-01

92 papers 5,256 citations

43 h-index 70 g-index

92 all docs 92 docs citations 92 times ranked 4581 citing authors

#	Article	IF	CITATIONS
1	Tollâ€like Receptor 4 Mediates Histone Subunit H3â€induced Endothelial Dysfunction in Human Lung Endothelium. FASEB Journal, 2022, 36, .	0.5	2
2	GPR68 Inhibition with a Novel Group of Ogremorphin Inhibitors Upregulate Endothelial Barrier Function and Protect Against Bacterial Pathogens or Acidosisâ€induced Inflammation in Lung Endothelium. FASEB Journal, 2022, 36, .	0.5	1
3	TLR7 Mediates Acute Respiratory Distress Syndrome in Sepsis by Sensing Extracellular miR-146a. American Journal of Respiratory Cell and Molecular Biology, 2022, 67, 375-388.	2.9	12
4	SOCS3–microtubule interaction via CLIP-170 and CLASP2 is critical for modulation of endothelial inflammation and lung injury. Journal of Biological Chemistry, 2021, 296, 100239.	3.4	10
5	Microtubuleâ€dependent mechanism of antiâ€inflammatory effect of SOCS1 in endothelial dysfunction and lung injury. FASEB Journal, 2021, 35, e21388.	0.5	8
6	Class B Scavenger Receptors BI and BII Protect against LPS-Induced Acute Lung Injury in Mice by Mediating LPS. Infection and Immunity, 2021, 89, e0030121.	2,2	4
7	Oxidized phospholipids on alkyl-amide scaffold demonstrate anti-endotoxin and endothelial barrier-protective properties. Free Radical Biology and Medicine, 2021, 174, 264-271.	2.9	4
8	Microtubules as Major Regulators of Endothelial Function: Implication for Lung Injury. Frontiers in Physiology, 2021, 12, 758313.	2.8	6
9	Contrasting effects of stored allogeneic red blood cells and their supernatants on permeability and inflammatory responses in human pulmonary endothelial cells. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2020, 318, L533-L548.	2.9	6
10	Extracellular histones in lung dysfunction: a new biomarker and therapeutic target?. Pulmonary Circulation, 2020, 10, 1-8.	1.7	12
11	SIRT7 deficiency suppresses inflammation, induces EndoMT, and increases vascular permeability in primary pulmonary endothelial cells. Scientific Reports, 2020, 10, 12497.	3.3	15
12	Mechanosensitive Rap1 activation promotes barrier function of lung vascular endothelium under cyclic stretch. Molecular Biology of the Cell, 2019, 30, 959-974.	2.1	20
13	Staphylococcus aureus–induced endothelial permeability and inflammation are mediated by microtubule destabilization. Journal of Biological Chemistry, 2019, 294, 3369-3384.	3.4	37
14	Microtubule destabilization caused by particulate matter contributes to lung endothelial barrier dysfunction and inflammation. Cellular Signalling, 2019, 53, 246-255.	3.6	17
15	Elevated truncated oxidized phospholipids as a factor exacerbating ALI in the aging lungs. FASEB Journal, 2019, 33, 3887-3900.	0.5	24
16	Incorporation of iloprost in phospholipase-resistant phospholipid scaffold enhances its barrier protective effects on pulmonary endothelium. Scientific Reports, 2018, 8, 879.	3.3	16
17	Cellular Crosstalk between Pulmonary Endothelial Cells and Fibroblasts Suppresses Inflammatory and Fibrotic Responses in Acute Exacerbations of Pulmonary Fibrosis. FASEB Journal, 2018, 32, 746.5.	0.5	O
18	Regulation of lung endothelial permeability and inflammatory responses by prostaglandin A2: role of EP4 receptor. Molecular Biology of the Cell, 2017, 28, 1622-1635.	2.1	29

#	Article	IF	CITATIONS
19	Anti-Inflammatory Effects of OxPAPC Involve Endothelial Cell–Mediated Generation of LXA4. Circulation Research, 2017, 121, 244-257.	4.5	37
20	Prostaglandin E receptorâ€4 receptor mediates endothelial barrier–enhancing and antiâ€inflammatory effects of oxidized phospholipids. FASEB Journal, 2017, 31, 4187-4202.	0.5	14
21	Effects of prostaglandin lipid mediators on agonist-induced lung endothelial permeability and inflammation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2017, 313, L710-L721.	2.9	22
22	Role of End Binding Protein-1 in endothelial permeability response to barrier-disruptive and barrier-enhancing agonists. Cellular Signalling, 2017, 29, 1-11.	3.6	3
23	Chronic high-magnitude cyclic stretch stimulates EC inflammatory response via VEGF receptor 2-dependent mechanism. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2016, 310, L1062-L1070.	2.9	15
24	Selective Role of Vinculin in Contractile Mechanisms of Endothelial Permeability. American Journal of Respiratory Cell and Molecular Biology, 2016, 55, 476-486.	2.9	17
25	Role of Cingulin in Agonist-induced Vascular Endothelial Permeability. Journal of Biological Chemistry, 2016, 291, 23681-23692.	3.4	20
26	Synthetic Amphipathic Helical Peptides Targeting CD36 Attenuate Lipopolysaccharide-Induced Inflammation and Acute Lung Injury. Journal of Immunology, 2016, 197, 611-619.	0.8	28
27	Dual role of vinculin in barrier-disruptive and barrier-enhancing endothelial cell responses. Cellular Signalling, 2016, 28, 541-551.	3.6	38
28	Activation of Vascular Endothelial Growth Factor (VEGF) Receptor 2 Mediates Endothelial Permeability Caused by Cyclic Stretch. Journal of Biological Chemistry, 2016, 291, 10032-10045.	3 . 4	56
29	Modulation of Endothelial Inflammation by Low and High Magnitude Cyclic Stretch. PLoS ONE, 2016, 11, e0153387.	2.5	16
30	Hepatocyte Growth Factor-induced Asef-IQGAP1 Complex Controls Cytoskeletal Remodeling and Endothelial Barrier. Journal of Biological Chemistry, 2015, 290, 4097-4109.	3.4	36
31	Asef mediates HGF protective effects against LPS-induced lung injury and endothelial barrier dysfunction. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L452-L463.	2.9	40
32	Prostacyclin post-treatment improves LPS-induced acute lung injury and endothelial barrier recovery via Rap1. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 778-791.	3.8	45
33	Asef controls vascular endothelial permeability and barrier recovery in the lung. Molecular Biology of the Cell, 2015, 26, 636-650.	2.1	23
34	Oxidized phospholipids protect against lung injury and endothelial barrier dysfunction caused by heat-inactivated <i>Staphylococcus aureus</i> . American Journal of Physiology - Lung Cellular and Molecular Physiology, 2015, 308, L550-L562.	2.9	45
35	Mechanosensitive PPAP2B Regulates Endothelial Responses to Atherorelevant Hemodynamic Forces. Circulation Research, 2015, 117, e41-e53.	4.5	75
36	Role of Krev Interaction Trapped-1 in Prostacyclin-Induced Protection against Lung Vascular Permeability Induced by Excessive Mechanical Forces and Thrombin Receptor Activating Peptide 6. American Journal of Respiratory Cell and Molecular Biology, 2015, 53, 834-843.	2.9	17

#	Article	IF	Citations
37	Role of microtubules in attenuation of PepG-induced vascular endothelial dysfunction by atrial natriuretic peptide. Biochimica Et Biophysica Acta - Molecular Basis of Disease, 2015, 1852, 104-119.	3.8	11
38	Stiffness-Activated GEF-H1 Expression Exacerbates LPS-Induced Lung Inflammation. PLoS ONE, 2014, 9, e92670.	2.5	36
39	Gap Junction Protein Connexin43 Exacerbates Lung Vascular Permeability. PLoS ONE, 2014, 9, e100931.	2.5	53
40	GRP78 is a novel receptor initiating a vascular barrier protective response to oxidized phospholipids. Molecular Biology of the Cell, 2014, 25, 2006-2016.	2.1	49
41	IQGAP1 Regulates Endothelial Barrier Function via EB1-Cortactin Cross Talk. Molecular and Cellular Biology, 2014, 34, 3546-3558.	2.3	35
42	Control of Vascular Permeability by Atrial Natriuretic Peptide via a GEF-H1-dependent Mechanism. Journal of Biological Chemistry, 2014, 289, 5168-5183.	3.4	33
43	Paxillin mediates stretchâ€induced Rho signaling and endothelial permeability ⟨i⟩via⟨ i⟩ assembly of paxillinâ€p42 44MAPKâ€GEFâ€H1 complex. FASEB Journal, 2014, 28, 3249-3260.	0.5	32
44	Hepatocyte growth factor triggers distinct mechanisms of Asef and Tiam1 activation to induce endothelial barrier enhancement. Cellular Signalling, 2014, 26, 2306-2316.	3.6	12
45	Microtubule Dynamics Control HGF-Induced Lung Endothelial Barrier Enhancement. PLoS ONE, 2014, 9, e105912.	2.5	12
46	Endothelial barrier disruption and recovery is controlled by substrate stiffness. Microvascular Research, 2013, 87, 50-57.	2.5	81
47	Fragmented oxidation products define barrier disruptive endothelial cell response to OxPAPC. Translational Research, 2013, 161, 495-504.	5.0	63
48	Cell-type-specific crosstalk between p38 MAPK and Rho signaling in lung micro- and macrovascular barrier dysfunction induced by Staphylococcus aureus-derived pathogens. Translational Research, 2013, 162, 45-55.	5.0	18
49	Measurement of local permeability at subcellular level in cell models of agonist- and ventilator-induced lung injury. Laboratory Investigation, 2013, 93, 254-263.	3.7	130
50	Mechanical induction of group V phospholipase A2 causes lung inflammation and acute lung injury. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2013, 304, L689-L700.	2.9	29
51	lloprost improves endothelial barrier function in lipopolysaccharide-induced lung injury. European Respiratory Journal, 2013, 41, 165-176.	6.7	58
52	Rap-afadin axis in control of Rho signaling and endothelial barrier recovery. Molecular Biology of the Cell, 2013, 24, 2678-2688.	2.1	68
53	Stimulation of Rho signaling by pathologic mechanical stretch is a "second hit―to Rho-independent lung injury induced by IL-6. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2012, 302, L965-L975.	2.9	57
54	Oxidative Stress Contributes to Lung Injury and Barrier Dysfunction via Microtubule Destabilization. American Journal of Respiratory Cell and Molecular Biology, 2012, 47, 688-697.	2.9	105

#	Article	IF	CITATIONS
55	VEâ€cadherin transâ€interactions modulate Rac activation and enhancement of lung endothelial barrier by iloprost. Journal of Cellular Physiology, 2012, 227, 3405-3416.	4.1	43
56	Novel role of stathmin in microtubuleâ€dependent control of endothelial permeability. FASEB Journal, 2012, 26, 3862-3874.	0.5	29
57	Afadin controls p120â€catenin–ZOâ€1 interactions leading to endothelial barrier enhancement by oxidized phospholipids. Journal of Cellular Physiology, 2012, 227, 1883-1890.	4.1	42
58	A Role for VEGFR2 Activation in Endothelial Responses Caused by Barrier Disruptive OxPAPC Concentrations. PLoS ONE, 2012, 7, e30957.	2.5	27
59	Induction of cellular antioxidant defense by amifostine improves ventilator-induced lung injury*. Critical Care Medicine, 2011, 39, 2711-2721.	0.9	38
60	Atrial natriuretic peptide protects against <i>Staphylococcus aureus</i> endothelial barrier dysfunction. Journal of Applied Physiology, 2011, 110, 213-224.	2.5	34
61	p190RhoGAP mediates protective effects of oxidized phospholipids in the models of ventilator-induced lung injury. Experimental Cell Research, 2011, 317, 859-872.	2.6	46
62	Association between adherens junctions and tight junctions via rap1 promotes barrier protective effects of oxidized phospholipids. Journal of Cellular Physiology, 2011, 226, 2052-2062.	4.1	56
63	Atrial natriuretic peptide attenuates LPS-induced lung vascular leak: role of PAK1. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 299, L652-L663.	2.9	59
64	Mechanotransduction by GEF-H1 as a novel mechanism of ventilator-induced vascular endothelial permeability. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2010, 298, L837-L848.	2.9	90
65	Lung endothelial barrier protection by iloprost in the 2-hit models of ventilator-induced lung injury (VILI) involves inhibition of Rho signaling. Translational Research, 2010, 155, 44-54.	5.0	47
66	Rac GTPase is a hub for protein kinase A and Epac signaling in endothelial barrier protection by cAMP. Microvascular Research, 2010, 79, 128-138.	2.5	70
67	Paxillin Is Involved in the Differential Regulation of Endothelial Barrier by HGF and VEGF. American Journal of Respiratory Cell and Molecular Biology, 2009, 40, 99-107.	2.9	67
68	Rap1 mediates protective effects of iloprost against ventilator-induced lung injury. Journal of Applied Physiology, 2009, 107, 1900-1910.	2.5	45
69	Epac/Rap and PKA are novel mechanisms of ANPâ€induced Racâ€mediated pulmonary endothelial barrier protection. Journal of Cellular Physiology, 2008, 215, 715-724.	4.1	127
70	Long-term cyclic stretch controls pulmonary endothelial permeability at translational and post-translational levels. Experimental Cell Research, 2008, 314, 3466-3477.	2.6	36
71	Oxidized phospholipids reduce ventilator-induced vascular leak and inflammation in vivo. Critical Care, 2008, 12, R27.	5.8	65
72	Magnitude-dependent effects of cyclic stretch on HGF- and VEGF-induced pulmonary endothelial remodeling and barrier regulation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L612-L623.	2.9	60

#	Article	IF	CITATIONS
73	Cross talk between paxillin and Rac is critical for mediation of barrier-protective effects by oxidized phospholipids. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2008, 295, L593-L602.	2.9	34
74	Polar head groups are important for barrier-protective effects of oxidized phospholipids on pulmonary endothelium. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 292, L924-L935.	2.9	64
75	HGF attenuates thrombinâ€induced endothelial permeability by Tiamlâ€mediated activation of the Rac pathway and by Tiam1/Racâ€dependent inhibition of the Rho pathway. FASEB Journal, 2007, 21, 2776-2786.	0.5	119
76	Paxillin-Î ² -catenin interactions are involved in Rac/Cdc42-mediated endothelial barrier-protective response to oxidized phospholipids. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2007, 293, L199-L211.	2.9	80
77	Signaling pathways involved in OxPAPC-induced pulmonary endothelial barrier protection. Microvascular Research, 2007, 73, 173-181.	2.5	45
78	Tiam 1 and \hat{l}^2 PIX mediate Rac-dependent endothelial barrier protective response to oxidized phospholipids. Journal of Cellular Physiology, 2007, 211, 608-617.	4.1	57
79	Prostaglandins PGE2 and PGI2 promote endothelial barrier enhancement via PKA- and Epac1/Rap1-dependent Rac activation. Experimental Cell Research, 2007, 313, 2504-2520.	2.6	251
80	Differential Regulation of Pulmonary Endothelial Monolayer Integrity by Varying Degrees of Cyclic Stretch. American Journal of Pathology, 2006, 168, 1749-1761.	3.8	106
81	GEF-H1 is involved in agonist-induced human pulmonary endothelial barrier dysfunction. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2006, 290, L540-L548.	2.9	151
82	Involvement of microtubules and Rho pathway in TGF- \hat{l}^21 -induced lung vascular barrier dysfunction. Journal of Cellular Physiology, 2005, 204, 934-947.	4.1	107
83	MAP kinases in lung endothelial permeability induced by microtubule disassembly. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2005, 289, L75-L84.	2.9	73
84	ALK5 and Smad4 are involved in TGF- \hat{l}^21 -induced pulmonary endothelial permeability. FEBS Letters, 2005, 579, 4031-4037.	2.8	46
85	Protein kinase A attenuates endothelial cell barrier dysfunction induced by microtubule disassembly. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2004, 287, L86-L93.	2.9	72
86	Epoxycyclopentenone-Containing Oxidized Phospholipids Restore Endothelial Barrier Function via Cdc42 and Rac. Circulation Research, 2004, 95, 892-901.	4.5	146
87	Microtubule disassembly induces cytoskeletal remodeling and lung vascular barrier dysfunction: Role of Rho-dependent mechanisms. Journal of Cellular Physiology, 2004, 201, 55-70.	4.1	170
88	Novel role of microtubules in thrombinâ€induced endothelial barrier dysfunction. FASEB Journal, 2004, 18, 1879-1890.	0.5	182
89	Role of Rho GTPases in thrombin-induced lung vascular endothelial cells barrier dysfunction. Microvascular Research, 2004, 67, 64-77.	2.5	247
90	The Role of the Microtubules in Tumor Necrosis Factor-α–Induced Endothelial Cell Permeability. American Journal of Respiratory Cell and Molecular Biology, 2003, 28, 574-581.	2.9	295

#	Article	IF	CITATIONS
91	Magnitude-dependent regulation of pulmonary endothelial cell barrier function by cyclic stretch. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2003, 285, L785-L797.	2.9	233
92	Microtubule disassembly increases endothelial cell barrier dysfunction: role of MLC phosphorylation. American Journal of Physiology - Lung Cellular and Molecular Physiology, 2001, 281, L565-L574.	2.9	145