Kaoru Mitsui

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7436828/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Optimization of adenoviral gene transfer in human pluripotent stem cells. Biochemical and Biophysical Research Communications, 2021, 541, 78-83.	1.0	2
2	A Novel Construction of Lentiviral Vectors for Eliminating Tumorigenic Cells from Pluripotent Stem Cells. Stem Cells, 2018, 36, 230-239.	1.4	8
3	Viral Vector-Based Innovative Approaches to Directly Abolishing Tumorigenic Pluripotent Stem Cells for Safer Regenerative Medicine. Molecular Therapy - Methods and Clinical Development, 2017, 5, 51-58.	1.8	13
4	Conditionally replicating adenovirus prevents pluripotent stem cell–derived teratoma by specifically eliminating undifferentiated cells. Molecular Therapy - Methods and Clinical Development, 2015, 2, 15026.	1.8	16
5	Survivin-responsive conditionally replicating adenovirus kills rhabdomyosarcoma stem cells more efficiently than their progeny. Journal of Translational Medicine, 2014, 12, 27.	1.8	15
6	Gene targeting in human pluripotent stem cells with adeno-associated virus vectors. Biochemical and Biophysical Research Communications, 2009, 388, 711-717.	1.0	46
7	Introduction of a Foreign Gene into Zebrafish and Medaka Cells Using Adenoviral Vectors. Zebrafish, 2009, 6, 253-258.	0.5	19
8	Highly efficient transient gene expression and gene targeting in primate embryonic stem cells with helper-dependent adenoviral vectors. Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13781-13786.	3.3	111
9	PHYLOGENETIC RELATIONSHIPS AND TAXONOMY OF SARCINOID GREEN ALGAE: CHLOROSARCINOPSIS, DESMOTETRA, SARCINOCHLAMYS GEN. NOV., NEOCHLOROSARCINA, AND CHLOROSPHAEROPSIS (CHLOROPHYCEAE, CHLOROPHYTA)1. Journal of Phycology, 2006, 42, 679-695.	1.0	30
10	Role of ERas in promoting tumour-like properties in mouse embryonic stem cells. Nature, 2003, 423, 541-545.	13.7	305
11	The Homeoprotein Nanog Is Required for Maintenance of Pluripotency in Mouse Epiblast and ES Cells. Cell, 2003, 113, 631-642.	13.5	2,892
12	Fbx15 Is a Novel Target of Oct3/4 but Is Dispensable for Embryonic Stem Cell Self-Renewal and Mouse Development. Molecular and Cellular Biology, 2003, 23, 2699-2708.	1.1	252
13	MDM2 interacts with MDMX through their RING finger domains. FEBS Letters, 1999, 447, 5-9.	1.3	266
14	Cloning and Characterization of a Novel p21Cip1/Waf1-Interacting Zinc Finger Protein, Ciz1. Biochemical and Biophysical Research Communications, 1999, 264, 457-464.	1.0	69
15	A Novel Human Gene Encoding HECT Domain and RCC1-like Repeats Interacts with Cyclins and Is Potentially Regulated by the Tumor Suppressor Proteins. Biochemical and Biophysical Research Communications, 1999, 266, 115-122.	1.0	46
16	Cloning and Characterization of Novel CIS Family Genes. Biochemical and Biophysical Research Communications, 1997, 239, 439-446.	1.0	246
17	CIS, a Cytokine Inducible SH2 Protein, Is a Target of the JAK-STAT5 Pathway and Modulates STAT5 Activation. Blood, 1997, 89, 3148-3154.	0.6	478
18	A new protein containing an SH2 domain that inhibits JAK kinases. Nature, 1997, 387, 921-924.	13.7	1,319

#	Article	IF	CITATIONS
19	The phylogenetic relationship between the Chlamydomonadales and Chlorococcales inferred from 18SrDNA sequence data. Phycological Research, 1996, 44, 47-55.	0.8	213