Haseeb Hakkim

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7436488/publications.pdf

Version: 2024-02-01

10 papers	191 citations	1478505 6 h-index	9 g-index
15 all docs	15 docs citations	15 times ranked	268 citing authors

#	Article	IF	CITATIONS
1	Air pollution scenario analyses of fleet replacement strategies to accomplish reductions in criteria air pollutants and 74 VOCs over India. Atmospheric Environment: X, 2022, 13, 100150.	1.4	7
2	RTEII: A new high-resolution $(0.1 {\hat {\sf A}}^\circ {\hat {\sf A}} - 0.1 {\hat {\sf A}}^\circ)$ road transport emission inventory for India of 74 speciated NMVOCs, CO, NOx, NH3, CH4, CO2, PM2.5 reveals massive overestimation of NOx and CO and missing nitromethane emissions by existing inventories. Atmospheric Environment: X, 2021, 11, 100118.	1.4	8
3	Gridded 1 km \tilde{A} — 1 km emission inventory for paddy stubble burning emissions over north-west India constrained by measured emission factors of 77 VOCs and district-wise crop yield data. Science of the Total Environment, 2021, 789, 148064.	8.0	25
4	Probing wintertime air pollution sources in the Indo-Gangetic Plain through 52 hydrocarbons measured rarely at Delhi & Mohali. Science of the Total Environment, 2021, 801, 149711.	8.0	5
5	A new index to assess the air quality impact of urban tree plantation. Urban Climate, 2021, 40, 100995.	5.7	5
6	Significant emissions of dimethyl sulfide and monoterpenes by big-leaf mahogany trees: discovery of a missing dimethyl sulfide source to the atmospheric environment. Atmospheric Chemistry and Physics, 2020, 20, 375-389.	4.9	18
7	Non-methane hydrocarbon (NMHC) fingerprints of major urban and agricultural emission sources for use in source apportionment studies. Atmospheric Chemistry and Physics, 2020, 20, 12133-12152.	4.9	29
8	Gridded Emissions of CO, NO _{<i>x</i>} , SO ₂ , CO ₂ , NH ₃ , HCl, CH ₄ , PM _{2.5} , PM ₁₀ , BC, and NMVOC from Open Municipal Waste Burning in India. Environmental Science & Environmenta	10.0	71
9	Advances in Identification and Quantification of Non-methane Volatile Organic Compounds Emitted from Biomass Fires through Laboratory Fire Experiments. , 2019, , 169-197.		4
10	Storage stability studies and field application of low cost glass flasks for analyses of thirteen ambient VOCs using proton transfer reaction mass spectrometry. International Journal of Mass Spectrometry, 2017, 419, 11-19.	1.5	19