Pujun Xie

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7436412/publications.pdf

Version: 2024-02-01

	840585	794469
696	11	19
citations	h-index	g-index
19	19	831
docs citations	times ranked	citing authors
	citations 19	696 11 citations h-index 19 19

#	Article	IF	CITATIONS
1	Research advances in chemical modifications of starch for hydrophobicity and its applications: A review. Carbohydrate Polymers, 2020, 240, 116292.	5.1	155
2	Physicochemical and functional properties of Chinese quince seed protein isolate. Food Chemistry, 2019, 283, 539-548.	4.2	118
3	Copigmentation effects of phenolics on color enhancement and stability of blackberry wine residue anthocyanins: Chromaticity, kinetics and structural simulation. Food Chemistry, 2019, 275, 299-308.	4.2	89
4	Novel polysaccharide from Chaenomeles speciosa seeds: Structural characterization, α-amylase and α-glucosidase inhibitory activity evaluation. International Journal of Biological Macromolecules, 2020, 153, 755-766.	3.6	81
5	Enhanced extraction of hydroxytyrosol, maslinic acid and oleanolic acid from olive pomace: Process parameters, kinetics and thermodynamics, and greenness assessment. Food Chemistry, 2019, 276, 662-674.	4.2	67
6	Skin-care functions of peptides prepared from Chinese quince seed protein: Sequences analysis, tyrosinase inhibition and molecular docking study. Industrial Crops and Products, 2020, 148, 112331.	2.5	38
7	Biosurfactant–Protein Interaction: Influences of Mannosylerythritol Lipids-A on β-Glucosidase. Journal of Agricultural and Food Chemistry, 2018, 66, 238-246.	2.4	25
8	Low-Temperature Vacuum Drying of Natural Gardenia Yellow Pigment. Drying Technology, 2011, 29, 1132-1139.	1.7	20
9	Synthesis and biological activity of polyprenols. Fìtoterapìâ, 2015, 106, 184-193.	1.1	19
10	Phenolic Compounds and Triterpenes in Different Olive Tissues and Olive Oil By-Products, and Cytotoxicity on Human Colorectal Cancer Cells: The Case of Frantoio, Moraiolo and Leccino Cultivars (Olea europaea L.). Foods, 2021, 10, 2823.	1.9	18
11	Influences of mannosylerythritol lipid-A on the self-assembling structure formation and functional properties of heat-induced \hat{l}^2 -lactoglobulin aggregates. Food Hydrocolloids, 2019, 96, 310-321.	5.6	16
12	An innovative co-fungal treatment to poplar bark sawdust for delignification and polyphenol enrichment. Industrial Crops and Products, 2020, 157, 112896.	2.5	12
13	Detoxified and antimicrobial-enhanced olive mill wastewater phenols capping ZnO nanoparticles incorporated with carboxymethyl cellulose for fresh strawberry preservation. Postharvest Biology and Technology, 2022, 188, 111891.	2.9	9
14	Optimization of the production process of dried unripe olives (Olea europaea L.) as a nutraceutical ingredient naturally rich in phenolic compounds. LWT - Food Science and Technology, 2020, 129, 109569.	2.5	6
15	Chinese quince seed proteins: sequential extraction processing and fraction characterization. Journal of Food Science and Technology, 2020, 57, 764-774.	1.4	5
16	Oxidative polymerization of hydroxytyrosol catalyzed by laccase, tyrosinase or horseradish peroxidase: influencing factors and molecular simulations. Journal of Biomolecular Structure and Dynamics, 2021, 39, 5486-5497.	2.0	5
17	Oxidative polymerization process of hydroxytyrosol catalysed by polyphenol oxidases or peroxidase: Characterization, kinetics and thermodynamics. Food Chemistry, 2021, 337, 127996.	4.2	5
18	The aqueous assembly preparation of OPs-AgNPs with phenols from olive mill wastewater and its mechanism on antimicrobial function study. Food Chemistry, 2022, 376, 131924.	4.2	5

#	Article	IF	CITATIONS
19	Mass Transfer Modeling of αâ€Eleostearic Acid from Tung Oil Concentration by Lowâ€Temperature Crystallization. ChemistrySelect, 2020, 5, 4715-4721.	0.7	3