Xiangli Kong

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7436112/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Physicochemical properties of starches from diverse rice cultivars varying in apparent amylose content and gelatinisation temperature combinations. Food Chemistry, 2015, 172, 433-440.	8.2	283
2	Critical roles of soluble starch synthase SSIIIa and granule-bound starch synthase Waxy in synthesizing resistant starch in rice. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 12844-12849.	7.1	154
3	Effect of microwave irradiation on internal molecular structure and physical properties of waxy maize starch. Food Hydrocolloids, 2017, 69, 473-482.	10.7	134
4	Analysis of Genotypic and Environmental Effects on Rice Starch. 1. Apparent Amylose Content, Pasting Viscosity, and Gel Texture. Journal of Agricultural and Food Chemistry, 2004, 52, 6010-6016.	5.2	104
5	Physical properties of Amaranthus starch. Food Chemistry, 2009, 113, 371-376.	8.2	103
6	Relationships among Genetic, Structural, and Functional Properties of Rice Starch. Journal of Agricultural and Food Chemistry, 2015, 63, 6241-6248.	5.2	98
7	Effects of heat–moisture treatment reaction conditions on the physicochemical and structural properties of maize starch: Moisture and length of heating. Food Chemistry, 2015, 173, 1125-1132.	8.2	96
8	Controlled ultrasound treatments modify the morphology and physical properties of rice starch rather than the fine structure. Ultrasonics Sonochemistry, 2019, 59, 104709.	8.2	96
9	Molecular structure of amylopectin from amaranth starch and its effect on physicochemical properties. International Journal of Biological Macromolecules, 2008, 43, 377-382.	7.5	94
10	Starch granule-associated proteins affect the physicochemical properties of rice starch. Food Hydrocolloids, 2020, 101, 105504.	10.7	67
11	Fine structure characterization of amylopectins from grain amaranth starch. Carbohydrate Research, 2009, 344, 1701-1708.	2.3	62
12	Effect of gamma irradiation on the thermal and rheological properties of grain amaranth starch. Radiation Physics and Chemistry, 2009, 78, 954-960.	2.8	56
13	Rheological properties of starches from grain amaranth and their relationship to starch structure. Starch/Staerke, 2010, 62, 302-308.	2.1	53
14	Physicochemical and structural characteristics of starches from Chinese hullâ€less barley cultivars. International Journal of Food Science and Technology, 2016, 51, 509-518.	2.7	37
15	Effects of gamma irradiation on physicochemical properties of native and acetylated wheat starches. International Journal of Biological Macromolecules, 2016, 91, 1141-1150.	7.5	35
16	Influence of acid hydrolysis on thermal and rheological properties of amaranth starches varying in amylose content. Journal of the Science of Food and Agriculture, 2012, 92, 1800-1807.	3.5	33
17	Characterization of multi-scale structure and thermal properties of Indica rice starch with different amylose contents. RSC Advances, 2016, 6, 107491-107497.	3.6	33
18	Viscoelastic properties of starches and flours from two novel rice mutants induced by gamma irradiation. LWT - Food Science and Technology, 2015, 60, 578-582.	5.2	32

XIANGLI KONG

1

#	Article	IF	CITATIONS
19	Rapid Prediction of Acid Detergent Fiber, Neutral Detergent Fiber, and Acid Detergent Lignin of Rice Materials by Near-Infrared Spectroscopy. Journal of Agricultural and Food Chemistry, 2005, 53, 2843-2848.	5.2	29
20	Effect of fertiliser on functional properties of flour from four rice varieties grown in Sri Lanka. Journal of the Science of Food and Agriculture, 2011, 91, 1271-1276.	3.5	27
21	Analysis of Genotypic and Environmental Effects on Rice Starch. 2. Thermal and Retrogradation Properties. Journal of Agricultural and Food Chemistry, 2004, 52, 6017-6022.	5.2	24
22	Morphological and physicochemical properties of two starch mutants induced from a high amylose indica rice by gamma irradiation. Starch/Staerke, 2014, 66, 157-165.	2.1	22
23	Physicochemical properties and starch digestibility of inâ€kernel heatâ€moistureâ€treated waxy, lowâ€, and highâ€amylose rice starch. Starch/Staerke, 2017, 69, 1600164.	2.1	22
24	Functional Properties and Retrogradation of Heatâ€Moisture Treated Wheat and Potato Starches in the Presence of Hydroxypropyl β•yclodextrin. Starch/Staerke, 2010, 62, 69-77.	2.1	18
25	<i>Lactobacillus rhamnosus</i> zz-1 exerts preventive effects on chronic unpredictable mild stress-induced depression in mice <i>via</i> regulating the intestinal microenvironment. Food and Function, 2022, 13, 4331-4343.	4.6	18
26	Physicochemical and crystalline properties of heat–moistureâ€treated rice starch: combined effects of moisture and duration of heating. Journal of the Science of Food and Agriculture, 2015, 95, 2874-2879.	3.5	17
27	Effect of soil moisture stress from flowering to grain maturity on functional properties of Sri Lankan rice flour. Starch/Staerke, 2011, 63, 283-290.	2.1	16
28	Physicochemical Properties of Mung Bean Starches Isolated From Four Varieties Grown in Sri Lanka. Starch/Staerke, 2018, 70, 1700129.	2.1	13
29	Physicochemical properties of starch dispersed in 1-allyl-3-methylimidazolium chloride. Industrial Crops and Products, 2013, 46, 197-204.	5.2	9
30	Gamma Irradiation of Starch. , 2018, , 63-96.		7
31	Starches Modified by Nonconventional Techniques and Food Applications. , 2019, , 271-295.		6
32	Physicochemical properties, digestibility and expected glycaemic index of high amylose rice differing in lengthâ€width ratio in Sri Lanka. International Journal of Food Science and Technology, 2020, 55, 74-81.	2.7	6
33	A novel starch: Characterizations of starches separated from tea (Camellia sinensis (L.) O. Ktze) seed. International Journal of Biological Macromolecules, 2019, 139, 1085-1091.	7.5	5
34	Interrelating Grain Hardness Index of Wheat with Physicochemical and Structural Properties of Starch Extracted Therefrom. Foods, 2022, 11, 1087.	4.3	4
35	Cluster and building block structure of amylopectin from waxy maize starch. Cereal Chemistry, 2021, 98, 616-623.	2.2	1

Fine Structure of Amylose and Amylopectin. , 2020, , 29-39.