Mihaela Negreanu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7436014/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Convergence and numerical solution of nonlinear generalized Benjamin–Bona–Mahony–Burgers equation in 2D and 3D via generalized finite difference method. International Journal of Computer Mathematics, 2022, 99, 1517-1537.	1.8	5
2	Numerical Solutions to Wave Propagation and Heat Transfer Non-Linear PDEs by Using a Meshless Method. Mathematics, 2022, 10, 332.	2.2	3
3	Dynamics in a Chemotaxis Model with Periodic Source. Mathematics, 2022, 10, 312.	2.2	0
4	A Novel Spatio-Temporal Fully Meshless Method for Parabolic PDEs. Mathematics, 2022, 10, 1870.	2.2	5
5	On the convergence of the generalized finite difference method for solving a chemotaxis system with no chemical diffusion. Computational Particle Mechanics, 2021, 8, 625-636.	3.0	2
6	Convergence and numerical simulations of prey-predator interactions via a meshless method. Applied Numerical Mathematics, 2021, 161, 333-347.	2.1	5
7	Continuous and discrete periodic asymptotic behavior of solutions to a competitive chemotaxis PDEs system. Communications in Nonlinear Science and Numerical Simulation, 2021, 95, 105592.	3.3	4
8	Solving Monge-Ampère equation in 2D and 3D by Generalized Finite Difference Method. Engineering Analysis With Boundary Elements, 2021, 124, 52-63.	3.7	6
9	Uniform Boundedness of Solutions for a Two Species Taxis System with Intraspecific and Interspecific Competition. Results in Mathematics, 2021, 76, 1.	0.8	0
10	Convergence and Numerical Solution of a Model for Tumor Growth. Mathematics, 2021, 9, 1355.	2.2	5
11	Solving a reaction–diffusion system with chemotaxis and non-local terms using Generalized Finite Difference Method. Study of the convergence. Journal of Computational and Applied Mathematics, 2021, 389, 113325.	2.0	4
12	On a fully parabolic chemotaxis system with nonlocal growth term. Nonlinear Analysis: Theory, Methods & Applications, 2021, 213, 112518.	1.1	3
13	Solving Eikonal equation in 2D and 3D by generalized finite difference method. Computational and Mathematical Methods, 2021, 3, e1203.	0.8	0
14	A Note on a Meshless Method for Fractional Laplacian at Arbitrary Irregular Meshes. Mathematics, 2021, 9, 2843.	2.2	4
15	Uniform boundedness for a predator-prey system with chemotaxis and dormancy of predators. Quarterly of Applied Mathematics, 2021, 79, 367-382.	0.7	1
16	Uniform asymptotic behavior of numerical solutions for a predator-prey system with diffusion and chemotaxis. Engineering Analysis With Boundary Elements, 2020, 120, 82-94.	3.7	2
17	Complex Ginzburg–Landau Equation with Generalized Finite Differences. Mathematics, 2020, 8, 2248	2.2	4
18	Solving a chemotaxis–haptotaxis system in 2D using Generalized Finite Difference Method. Computers and Mathematics With Applications, 2020, 80, 762-777.	2.7	15

Mihaela Negreanu

#	Article	IF	CITATIONS
19	On a fully parabolic chemotaxis system with source term and periodic asymptotic behavior. Zeitschrift Fur Angewandte Mathematik Und Physik, 2020, 71, 1.	1.4	10
20	Solving a fully parabolic chemotaxis system with periodic asymptotic behavior using Generalized Finite Difference Method. Applied Numerical Mathematics, 2020, 157, 356-371.	2.1	8
21	On the numerical solution to a parabolic-elliptic system with chemotactic and periodic terms using Generalized Finite Differences. Engineering Analysis With Boundary Elements, 2020, 113, 181-190.	3.7	23
22	A note on a periodic Parabolic-ODE chemotaxis system. Applied Mathematics Letters, 2020, 106, 106351.	2.7	9
23	Uniform boundedness of solutions for a predator-prey system with diffusion and chemotaxis. Comptes Rendus Mathematique, 2020, 358, 103-108.	0.3	3
24	On a Parabolic-ODE system of chemotaxis. Discrete and Continuous Dynamical Systems - Series S, 2020, 13, 279-292.	1.1	3
25	Global existence and asymptotic behavior of solutions to a chemotaxis system with chemicals and prey-predator terms. Discrete and Continuous Dynamical Systems - Series B, 2020, 25, 3335-3356.	0.9	3
26	On a parabolicâ€elliptic chemotaxis system with periodic asymptotic behavior. Mathematical Methods in the Applied Sciences, 2019, 42, 1210-1226.	2.3	7
27	Global existence and asymptotic behavior of solutions to a Predator–Prey chemotaxis system with two chemicals. Journal of Mathematical Analysis and Applications, 2019, 474, 1116-1131.	1.0	17
28	On a parabolic–elliptic system with gradient dependent chemotactic coefficient. Journal of Differential Equations, 2018, 265, 733-751.	2.2	28
29	A convergent numerical scheme for integrodifferential kinetic models of angiogenesis. Journal of Computational Physics, 2018, 375, 1270-1294.	3.8	7
30	Asymptotic behavior and global existence of solutions to a two-species chemotaxis system with two chemicals. Zeitschrift Fur Angewandte Mathematik Und Physik, 2018, 69, 1.	1.4	11
31	Constructing solutions for a kinetic model of angiogenesis in annular domains. Applied Mathematical Modelling, 2017, 45, 303-322.	4.2	12
32	Asymptotic stability of a two species chemotaxis system with non-diffusive chemoattractant. Journal of Differential Equations, 2015, 258, 1592-1617.	2.2	73
33	An inverse problem for the compressible Reynolds equation. Quarterly of Applied Mathematics, 2015, 73, 607-614.	0.7	Ο
34	Asymptotic stability of a mathematical model of cell population. Journal of Mathematical Analysis and Applications, 2014, 415, 963-971.	1.0	0
35	On a Two Species Chemotaxis Model with Slow Chemical Diffusion. SIAM Journal on Mathematical Analysis, 2014, 46, 3761-3781.	1.9	60
36	On a comparison method to reaction-diffusion systems and its applications to chemotaxis. Discrete and Continuous Dynamical Systems - Series B, 2013, 18, 2669-2688.	0.9	16

Mihaela Negreanu

0

#	Article	IF	CITATIONS
37	On a parabolic–elliptic chemotactic system with non-constant chemotactic sensitivity. Nonlinear Analysis: Theory, Methods & Applications, 2013, 80, 1-13.	1.1	14
38	On a competitive system under chemotactic effects with non-local terms. Nonlinearity, 2013, 26, 1083-1103.	1.4	35
39	Convergence of a Semidiscrete Two-Grid Algorithm for the Controllability of the \$1-d\$ Wave Equation. SIAM Journal on Numerical Analysis, 2008, 46, 3233-3263.	2.3	2
40	Discrete Ingham Inequalities and Applications. SIAM Journal on Numerical Analysis, 2006, 44, 412-448.	2.3	20
41	Wavelet Filtering for Exact Controllability of the Wave Equation. SIAM Journal of Scientific Computing, 2006, 28, 1851-1885.	2.8	10
42	Convergence of a multigrid method for the controllability of a 1-d wave equation. Comptes Rendus Mathematique, 2004, 338, 413-418.	0.3	52
43	Discrete Ingham inequalities and applications. Comptes Rendus Mathematique, 2004, 338, 281-286.	0.3	12
44	Uniform boundary controllability of a discrete 1-D wave equation. Systems and Control Letters, 2003, 48, 261-279.	2.3	52
45	Uniform observability of the wave equation via a discrete Ingham inequality. , 0, , .		1

Convergence of a multi-grid algorithm for the controllability of the wave equation. , 0, , .