
Philippe Nédélec

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7435934/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Lightning NO _x influence on large-scale NO _y and O ₃ plumes observed over the northern mid-latitudes. Tellus, Series B: Chemical and Physical Meteorology, 2022, 66, 25544.	1.6	8
2	Global-scale atmosphere monitoring by in-service aircraft – current achievements and future prospects of the European Research Infrastructure IAGOS. Tellus, Series B: Chemical and Physical Meteorology, 2022, 67, 28452.	1.6	118
3	The first regular measurements of ozone, carbon monoxide and water vapour in the Pacific UTLS by IAGOS. Tellus, Series B: Chemical and Physical Meteorology, 2022, 67, 28385.	1.6	13
4	Instrumentation on commercial aircraft for monitoring the atmospheric composition on a global scale: the IAGOS system, technical overview of ozone and carbon monoxide measurements. Tellus, Series B: Chemical and Physical Meteorology, 2022, 67, 27791.	1.6	61
5	Analysis of tropospheric ozone and carbon monoxide profiles over South America based on MOZAIC/IAGOS database and model simulations. Tellus, Series B: Chemical and Physical Meteorology, 2022, 67, 27884.	1.6	18
6	Impact of the COVIDâ€19 Economic Downturn on Tropospheric Ozone Trends: An Uncertainty Weighted Data Synthesis for Quantifying Regional Anomalies Above Western North America and Europe. AGU Advances, 2022, 3, .	5.4	9
7	Contributions of World Regions to the Global Tropospheric Ozone Burden Change From 1980 to 2010. Geophysical Research Letters, 2021, 48, .	4.0	22
8	Internal consistency of the IAGOS ozone and carbon monoxide measurements for the last 25 years. Atmospheric Measurement Techniques, 2021, 14, 3935-3951.	3.1	14
9	Origins and characterization of CO and O ₃ in the African upper troposphere. Atmospheric Chemistry and Physics, 2021, 21, 14535-14555.	4.9	2
10	The effects of the COVID-19 lockdowns on the composition of the troposphere as seen by In-service Aircraft for a Global Observing System (IAGOS) at Frankfurt. Atmospheric Chemistry and Physics, 2021, 21, 16237-16256.	4.9	12
11	Aircraft observations since the 1990s reveal increases of tropospheric ozone at multiple locations across the Northern Hemisphere. Science Advances, 2020, 6, .	10.3	64
12	The role of biomass burning as derived from the tropospheric CO vertical profiles measured by IAGOS aircraft in 2002–2017. Atmospheric Chemistry and Physics, 2018, 18, 17277-17306.	4.9	22
13	Climatology and long-term evolution of ozone and carbon monoxide in the upper troposphere–lower stratosphere (UTLS) at northern midlatitudes, as seen by IAGOS from 1995 to 2013. Atmospheric Chemistry and Physics, 2018, 18, 5415-5453.	4.9	44
14	Source attribution using FLEXPART and carbon monoxide emission inventories: SOFT-IO version 1.0. Atmospheric Chemistry and Physics, 2017, 17, 15271-15292.	4.9	23
15	Tropospheric ozone change from 1980 to 2010 dominated by equatorward redistribution ofÂemissions. Nature Geoscience, 2016, 9, 875-879.	12.9	140
16	Carbon monoxide climatology derived from the trajectory mapping of global MOZAIC-IAGOS data. Atmospheric Chemistry and Physics, 2016, 16, 10263-10282.	4.9	16
17	Extreme CO concentrations in the upper troposphere over northeast Asia in June 2003 from the in situ MOZAIC aircraft data. Geophysical Research Letters, 2005, 32, n/a-n/a.	4.0	61
18	Measurement of ozone and water vapor by Airbus in-service aircraft: The MOZAIC airborne program, an overview. Journal of Geophysical Research, 1998, 103, 25631-25642.	3.3	468

#	Article	IF	CITATIONS
19	Comparisons of ozone measurements from the MOZAIC airborne program and the ozone sounding network at eight locations. Journal of Geophysical Research, 1998, 103, 25695-25720.	3.3	201
20	Tropospheric CO vertical profiles measured by IAGOS aircraft in 2002–2017 and the role of biomass burning. Atmospheric Chemistry and Physics Discussions, 0, , 1-41.	1.0	0