
Emily A Keshner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7435862/publications.pdf Version: 2024-02-01

FMILY A KESHNED

#	Article	IF	CITATIONS
1	Effects of wearing a head-mounted display during a standard clinical test of dynamic balance. Gait and Posture, 2021, 85, 78-83.	1.4	11
2	The Untapped Potential of Virtual Reality in Rehabilitation of Balance and Gait in Neurological Disorders. Frontiers in Virtual Reality, 2021, 2, .	3.7	15
3	Visual-vestibular mismatch correlates with headache. Journal of Vestibular Research: Equilibrium and Orientation, 2021, 31, 173-180.	2.0	7
4	Visual dependence affects the motor behavior of older adults during the Timed Up and Go (TUG) test. Archives of Gerontology and Geriatrics, 2020, 87, 104004.	3.0	16
5	Balance confidence and turning behavior as a measure of fall risk. Gait and Posture, 2020, 80, 1-6.	1.4	11
6	Tracking the evolution of virtual reality applications to rehabilitation as a field of study. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 76.	4.6	40
7	Editorial: Current State of Postural Research - Beyond Automatic Behavior. Frontiers in Neurology, 2019, 10, 1160.	2.4	3
8	Visual dependence affects postural sway responses to continuous visual field motion in individuals with cerebral palsy. Developmental Neurorehabilitation, 2018, 21, 531-541.	1.1	9
9	The quest to apply VR technology to rehabilitation: tribulations and treasures. Journal of Vestibular Research: Equilibrium and Orientation, 2017, 27, 1-5.	2.0	39
10	Engagement with a virtual clinician encourages gesture usage in speakers with aphasia. , 2017, , .		2
11	Emergence of Virtual Reality as a Tool for Upper Limb Rehabilitation: Incorporation of Motor Control and Motor Learning Principles. Physical Therapy, 2015, 95, 415-425.	2.4	277
12	Visual conflict and cognitive load modify postural responses to vibrotactile noise. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 6.	4.6	15
13	Reorientation to vertical modulated by combined support surface tilt and virtual visual flow in healthy elders and adults with stroke. Journal of Neurology, 2012, 259, 2664-2672.	3.6	22
14	Axis of visual field rotation and order of presentation differentially affect postural responses in a virtual environment. , 2011, , .		0
15	Time series analysis of postural responses to combined visual pitch and support surface tilt. Neuroscience Letters, 2011, 491, 138-142.	2.1	9
16	Continuous visual field motion impacts the postural responses of older and younger women during and after support surface tilt. Experimental Brain Research, 2011, 211, 87-96.	1.5	25
17	Augmenting sensory-motor conflict promotes adaptation of postural behaviors in a virtual environment. , 2011, 2011, 1379-82.		11
18	Identifying the control of physically and perceptually evoked sway responses with coincident visual scene velocities and tilt of the base of support. Experimental Brain Research, 2010, 201, 663-672.	1.5	28

EMILY A KESHNER

#	Article	IF	CITATIONS
19	Influence of visual scene velocity on segmental kinematics during stance. Gait and Posture, 2009, 30, 211-216.	1.4	40
20	Postural behaviors to combined disturbances of the visual field and base of support. , 2009, , .		0
21	Postural and spatial orientation driven by virtual reality. Studies in Health Technology and Informatics, 2009, 145, 209-28.	0.3	28
22	Virtual scene velocity influences postural responses to an inclined base of support. , 2008, , .		0
23	Developments in Balance assessment and intervention as a challenge for virtual rehabilitation. , 2008, , .		0
24	Field of view and base of support width influence postural responses to visual stimuli during quiet stance. Gait and Posture, 2007, 25, 49-55.	1.4	40
25	Introduction to the special issue from the proceedings of the 2006 International Workshop on Virtual Reality in Rehabilitation. Journal of NeuroEngineering and Rehabilitation, 2007, 4, 18.	4.6	6
26	Pairing virtual reality with dynamic posturography serves to differentiate between patients experiencing visual vertigo. Journal of NeuroEngineering and Rehabilitation, 2007, 4, 24.	4.6	36
27	Visual motion combined with base of support width reveals variable field dependency in healthy young adults. Experimental Brain Research, 2006, 176, 182-187.	1.5	29
28	Employing a virtual environment in postural research and rehabilitation to reveal the impact of visual information. International Journal on Disability and Human Development, 2005, 4, .	0.2	5
29	Using Immersive Technology for Postural Research and Rehabilitation. Assistive Technology, 2004, 16, 54-62.	2.0	63
30	Head-trunk coordination in elderly subjects during linear anterior-posterior translations. Experimental Brain Research, 2004, 158, 213-22.	1.5	20
31	Considerations for the future development of virtual technology as a rehabilitation tool. Journal of NeuroEngineering and Rehabilitation, 2004, 1, 13.	4.6	42
32	Virtual reality and physical rehabilitation: a new toy or a new research and rehabilitation tool?. , 2004, 1, 8.		102
33	Postural responses exhibit multisensory dependencies with discordant visual and support surface motion. Journal of Vestibular Research: Equilibrium and Orientation, 2004, 14, 307-319.	2.0	70
34	Postural responses exhibit multisensory dependencies with discordant visual and support surface motion. Journal of Vestibular Research: Equilibrium and Orientation, 2004, 14, 307-19.	2.0	40
35	Musculoskeletal kinematics during voluntary head tracking movements in primate. Journal of Mechanical Science and Technology, 2003, 17, 32-39.	0.4	2
36	Comparison of cervical musculoskeletal kinematics in two different postures of primate during voluntary head tracking. Journal of Mechanical Science and Technology, 2003, 17, 1140-1147.	0.4	4

#	Article	IF	CITATIONS
37	Head-Trunk Coordination During Linear Anterior-Posterior Translations. Journal of Neurophysiology, 2003, 89, 1891-1901.	1.8	65
38	Dynamic and Kinematic Strategies for Head Movement Control. Annals of the New York Academy of Sciences, 2001, 942, 381-393.	3.8	27
39	Mechanisms Controlling Head Stabilization in the Elderly During Random Rotations in the Vertical Plane. Journal of Motor Behavior, 1996, 28, 324-336.	0.9	16