Emily A Keshner

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7435862/publications.pdf

Version: 2024-02-01

414414 430874 1,176 39 18 32 citations g-index h-index papers 40 40 40 1098 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	Emergence of Virtual Reality as a Tool for Upper Limb Rehabilitation: Incorporation of Motor Control and Motor Learning Principles. Physical Therapy, 2015, 95, 415-425.	2.4	277
2	Virtual reality and physical rehabilitation: a new toy or a new research and rehabilitation tool?. , 2004, $1,8.$		102
3	Postural responses exhibit multisensory dependencies with discordant visual and support surface motion. Journal of Vestibular Research: Equilibrium and Orientation, 2004, 14, 307-319.	2.0	70
4	Head-Trunk Coordination During Linear Anterior-Posterior Translations. Journal of Neurophysiology, 2003, 89, 1891-1901.	1.8	65
5	Using Immersive Technology for Postural Research and Rehabilitation. Assistive Technology, 2004, 16, 54-62.	2.0	63
6	Considerations for the future development of virtual technology as a rehabilitation tool. Journal of NeuroEngineering and Rehabilitation, 2004, 1, 13.	4. 6	42
7	Field of view and base of support width influence postural responses to visual stimuli during quiet stance. Gait and Posture, 2007, 25, 49-55.	1.4	40
8	Influence of visual scene velocity on segmental kinematics during stance. Gait and Posture, 2009, 30, 211-216.	1.4	40
9	Tracking the evolution of virtual reality applications to rehabilitation as a field of study. Journal of NeuroEngineering and Rehabilitation, 2019, 16, 76.	4.6	40
10	Postural responses exhibit multisensory dependencies with discordant visual and support surface motion. Journal of Vestibular Research: Equilibrium and Orientation, 2004, 14, 307-19.	2.0	40
11	The quest to apply VR technology to rehabilitation: tribulations and treasures. Journal of Vestibular Research: Equilibrium and Orientation, 2017, 27, 1-5.	2.0	39
12	Pairing virtual reality with dynamic posturography serves to differentiate between patients experiencing visual vertigo. Journal of NeuroEngineering and Rehabilitation, 2007, 4, 24.	4.6	36
13	Visual motion combined with base of support width reveals variable field dependency in healthy young adults. Experimental Brain Research, 2006, 176, 182-187.	1.5	29
14	Identifying the control of physically and perceptually evoked sway responses with coincident visual scene velocities and tilt of the base of support. Experimental Brain Research, 2010, 201, 663-672.	1.5	28
15	Postural and spatial orientation driven by virtual reality. Studies in Health Technology and Informatics, 2009, 145, 209-28.	0.3	28
16	Dynamic and Kinematic Strategies for Head Movement Control. Annals of the New York Academy of Sciences, 2001, 942, 381-393.	3.8	27
17	Continuous visual field motion impacts the postural responses of older and younger women during and after support surface tilt. Experimental Brain Research, 2011, 211, 87-96.	1.5	25
18	Reorientation to vertical modulated by combined support surface tilt and virtual visual flow in healthy elders and adults with stroke. Journal of Neurology, 2012, 259, 2664-2672.	3.6	22

#	Article	IF	Citations
19	Head-trunk coordination in elderly subjects during linear anterior-posterior translations. Experimental Brain Research, 2004, 158, 213-22.	1.5	20
20	Mechanisms Controlling Head Stabilization in the Elderly During Random Rotations in the Vertical Plane. Journal of Motor Behavior, 1996, 28, 324-336.	0.9	16
21	Visual dependence affects the motor behavior of older adults during the Timed Up and Go (TUG) test. Archives of Gerontology and Geriatrics, 2020, 87, 104004.	3.0	16
22	Visual conflict and cognitive load modify postural responses to vibrotactile noise. Journal of NeuroEngineering and Rehabilitation, 2014, 11, 6.	4.6	15
23	The Untapped Potential of Virtual Reality in Rehabilitation of Balance and Gait in Neurological Disorders. Frontiers in Virtual Reality, 2021, 2, .	3.7	15
24	Augmenting sensory-motor conflict promotes adaptation of postural behaviors in a virtual environment., 2011, 2011, 1379-82.		11
25	Effects of wearing a head-mounted display during a standard clinical test of dynamic balance. Gait and Posture, 2021, 85, 78-83.	1.4	11
26	Balance confidence and turning behavior as a measure of fall risk. Gait and Posture, 2020, 80, 1-6.	1.4	11
27	Time series analysis of postural responses to combined visual pitch and support surface tilt. Neuroscience Letters, 2011, 491, 138-142.	2.1	9
28	Visual dependence affects postural sway responses to continuous visual field motion in individuals with cerebral palsy. Developmental Neurorehabilitation, 2018, 21, 531-541.	1.1	9
29	Visual-vestibular mismatch correlates with headache. Journal of Vestibular Research: Equilibrium and Orientation, 2021, 31, 173-180.	2.0	7
30	Introduction to the special issue from the proceedings of the 2006 International Workshop on Virtual Reality in Rehabilitation. Journal of NeuroEngineering and Rehabilitation, 2007, 4, 18.	4.6	6
31	Employing a virtual environment in postural research and rehabilitation to reveal the impact of visual information. International Journal on Disability and Human Development, 2005, 4, .	0.2	5
32	Comparison of cervical musculoskeletal kinematics in two different postures of primate during voluntary head tracking. Journal of Mechanical Science and Technology, 2003, 17, 1140-1147.	0.4	4
33	Editorial: Current State of Postural Research - Beyond Automatic Behavior. Frontiers in Neurology, 2019, 10, 1160.	2.4	3
34	Musculoskeletal kinematics during voluntary head tracking movements in primate. Journal of Mechanical Science and Technology, 2003, 17, 32-39.	0.4	2
35	Engagement with a virtual clinician encourages gesture usage in speakers with aphasia. , 2017, , .		2
36	Virtual scene velocity influences postural responses to an inclined base of support., 2008,,.		0

3

#	Article	IF	CITATIONS
37	Developments in Balance assessment and intervention as a challenge for virtual rehabilitation. , 2008, , .		O
38	Postural behaviors to combined disturbances of the visual field and base of support., 2009,,.		0
39	Axis of visual field rotation and order of presentation differentially affect postural responses in a virtual environment. , $2011, \ldots$		O