Xu Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7435540/publications.pdf Version: 2024-02-01

Victor

#	Article	IF	CITATIONS
1	Molecular Insight into Microstructural and Dynamical Heterogeneities in Magnesium Ionic Liquid Electrolytes. Journal of Physical Chemistry Letters, 2022, 13, 105-111.	2.1	8
2	Challenges and Strategies for Highâ€Energy Aqueous Electrolyte Rechargeable Batteries. Angewandte Chemie - International Edition, 2021, 60, 598-616.	7.2	272
3	WÃ s srige Hochleistungsbatterien: Herausforderungen und Strategien. Angewandte Chemie, 2021, 133, 608-626.	1.6	14
4	An Alternative Charge-Storage Mechanism for High-Performance Sodium-Ion and Potassium-Ion Anodes. ACS Energy Letters, 2021, 6, 915-924.	8.8	21
5	Unveiling the Intricate Intercalation Mechanism in Manganese Sesquioxide as Positive Electrode in Aqueous Znâ€Metal Battery. Advanced Energy Materials, 2021, 11, 2100962.	10.2	39
6	Highly Reversible Sodiation of Tin in Glyme Electrolytes: The Critical Role of the Solid Electrolyte Interphase and Its Formation Mechanism. ACS Applied Materials & Interfaces, 2020, 12, 3697-3708.	4.0	37
7	Highly Concentrated KTFSI : Glyme Electrolytes for K/Bilayeredâ€V ₂ O ₅ Batteri Batteries and Supercaps, 2020, 3, 261-267.	es. 2.4	25
8	Cathode–Electrolyte Interphase in a LiTFSI/Tetraglyme Electrolyte Promoting the Cyclability of V2O5. ACS Applied Materials & Interfaces, 2020, 12, 54782-54790.	4.0	12
9	<i>Operando</i> pH Measurements Decipher H ⁺ /Zn ²⁺ Intercalation Chemistry in High-Performance Aqueous Zn/Î-V ₂ O ₅ Batteries. ACS Energy Letters, 2020, 5, 2979-2986.	8.8	126
10	Evaluation of counter and reference electrodes for the investigation of Ca battery materials. Journal of Power Sources Advances, 2020, 2, 100008.	2.6	14
11	Potassium sulphate (K 2 SO 4) activation of chestnut shell to oxygenâ€enriched porous carbons with enhanced capacitive properties. International Journal of Energy Research, 2020, 44, 5385-5396.	2.2	8
12	High-Voltage Operation of a V ₂ O ₅ Cathode in a Concentrated Gel Polymer Electrolyte for High-Energy Aqueous Zinc Batteries. ACS Applied Materials & Interfaces, 2020, 12, 15305-15312.	4.0	45
13	Alkoxy-functionalized ionic liquid electrolytes: understanding ionic coordination of calcium ion speciation for the rational design of calcium electrolytes. Energy and Environmental Science, 2020, 13, 2559-2569.	15.6	36
14	Electrochemical intercalation of anions in graphite for high-voltage aqueous zinc battery. Journal of Power Sources, 2020, 449, 227594.	4.0	52
15	High-Power Na-Ion and K-Ion Hybrid Capacitors Exploiting Cointercalation in Graphite Negative Electrodes. ACS Energy Letters, 2019, 4, 2675-2682.	8.8	88
16	Calcium vanadate sub-microfibers as highly reversible host cathode material for aqueous zinc-ion batteries. Chemical Communications, 2019, 55, 2265-2268.	2.2	111
17	Prototype rechargeable magnesium batteries using ionic liquid electrolytes. Journal of Power Sources, 2019, 423, 52-59.	4.0	48
18	Glyme-Based Electrolyte for Na/Bilayered-V2O5 Batteries. ACS Applied Energy Materials, 2019, 2, 2786-2793.	2.5	20

Xu Liu

#	Article	IF	CITATIONS
19	From Water and Ni Foam to a Ni(OH)2 @Ni Foam Binder-Free Supercapacitor Electrode: A Green Corrosion Route. ChemElectroChem, 2018, 5, 409-409.	1.7	4
20	Portably colorimetric paper sensor based on ZnS quantum dots for semi-quantitative detection of Co2+ through the measurement of grey level. Sensors and Actuators B: Chemical, 2018, 260, 1068-1075.	4.0	24
21	Grey level replaces fluorescent intensity: Fluorescent paper sensor based on ZnO nanoparticles for quantitative detection of Cu2+ without photoluminescence spectrometer. Sensors and Actuators B: Chemical, 2018, 255, 2356-2366.	4.0	24
22	From Water and Ni Foam to a Ni(OH) ₂ @Ni Foam Binderâ€Free Supercapacitor Electrode: A Green Corrosion Route. ChemElectroChem, 2018, 5, 434-444.	1.7	12
23	TiO2 nanoparticles functionalized by Pd nanoparticles for gas-sensing application with enhanced butane response performances. Scientific Reports, 2017, 7, 7692.	1.6	35
24	Combustion synthesized hierarchically porous Mn ₃ O ₄ for catalytic degradation of methyl orange. Canadian Journal of Chemical Engineering, 2017, 95, 643-647.	0.9	6
25	Acetone sensing performances based on nanoporous TiO2 synthesized by a facile hydrothermal method. Sensors and Actuators B: Chemical, 2017, 238, 491-500.	4.0	115
26	A general nonaqueous sol-gel route to g-C3N4-coupling photocatalysts: the case of Z-scheme g-C3N4/TiO2 with enhanced photodegradation toward RhB under visible-light. Scientific Reports, 2016, 6, 39531.	1.6	85
27	The xylene sensing performance of WO ₃ decorated anatase TiO ₂ nanoparticles as a sensing material for a gas sensor at a low operating temperature. RSC Advances, 2016, 6, 49692-49701.	1.7	53
28	Ni 3 S 2 @Ni foam 3D electrode prepared via chemical corrosion by sodium sulfide and using in hydrazine electro-oxidation. Electrochimica Acta, 2016, 213, 730-739.	2.6	69
29	Macro-/nanoporous Al-doped ZnO via self-sustained decomposition of metal-organic complexes for application in degradation of Congo red. Ceramics International, 2016, 42, 18914-18924.	2.3	14
30	Ag-Functionalized macro-/mesoporous AZO synthesized by solution combustion for VOCs gas sensing application. RSC Advances, 2016, 6, 101304-101312.	1.7	20
31	A high response butanol gas sensor based on ZnO hollow spheres. Sensors and Actuators B: Chemical, 2016, 237, 423-430.	4.0	137
32	A one-step nonaqueous sol–gel route to mixed-phase TiO ₂ with enhanced photocatalytic degradation of Rhodamine B under visible light. CrystEngComm, 2016, 18, 1964-1975.	1.3	33
33	Binder-free NiO@MnO 2 core-shell electrode: Rod-like NiO core prepared through corrosion by oxalic acid and enhanced pseudocapacitance with sphere-like MnO 2 shell. Electrochimica Acta, 2016, 189, 83-92.	2.6	47
34	Controllable synthesis and change of emission color from green to orange of ZnO quantum dots using different solvents. New Journal of Chemistry, 2015, 39, 2881-2888.	1.4	50
35	Facile Preparation of Well-Dispersed GO-SPEEK Composite Membranes by Electrospun for Fuel Cell Applications. Materials Research Society Symposia Proceedings, 2015, 1735, 32.	0.1	0
36	A high-performance n-butanol gas sensor based on ZnO nanoparticles synthesized by a low-temperature solvothermal route. RSC Advances, 2015, 5, 54372-54378.	1.7	74

Xu Liu

#	Article	IF	CITATIONS
37	Ag–ZnO heterostructure nanoparticles with plasmon-enhanced catalytic degradation for Congo red under visible light. RSC Advances, 2015, 5, 34456-34465.	1.7	65
38	Nanoparticle cluster gas sensor: Pt activated SnO ₂ nanoparticles for NH ₃ detection with ultrahigh sensitivity. Nanoscale, 2015, 7, 14872-14880.	2.8	284
39	Microstructure and properties of novel SPEEK/PVDF-g-PSSA blends for proton exchange membrane with improved compatibility. RSC Advances, 2015, 5, 69621-69628.	1.7	25
40	Butane detection: W-doped TiO ₂ nanoparticles for a butane gas sensor with high sensitivity and fast response/recovery. RSC Advances, 2015, 5, 96539-96546.	1.7	26
41	Combustion synthesis of porous Pt-functionalized SnO ₂ sheets for isopropanol gas detection with a significant enhancement in response. Journal of Materials Chemistry A, 2014, 2, 20089-20095.	5.2	106
42	Optical and gas sensing properties of Al-doped ZnO transparent conducting films prepared by sol–gel method under different heat treatments. Ceramics International, 2014, 40, 9931-9939.	2.3	43
43	Simple point contact WO3 sensor for NO2 sensing and relevant impedance analysis. International Journal of Minerals, Metallurgy and Materials, 2012, 19, 1142-1148.	2.4	9
44	Niobium Doping Effects on Performance of BaCo _{0.7} Fe _{0.3â~<i>x</i>} Nb _{<i>x</i>} O _{3â~î<} Perovskite. Journal of Physical Chemistry C, 2010, 114, 22338-22345.	1.5	39