
Xu Liu

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7435540/publications.pdf Version: 2024-02-01

Virtur

#	Article	IF	CITATIONS
1	Nanoparticle cluster gas sensor: Pt activated SnO ₂ nanoparticles for NH ₃ detection with ultrahigh sensitivity. Nanoscale, 2015, 7, 14872-14880.	2.8	284
2	Challenges and Strategies for Highâ€Energy Aqueous Electrolyte Rechargeable Batteries. Angewandte Chemie - International Edition, 2021, 60, 598-616.	7.2	272
3	A high response butanol gas sensor based on ZnO hollow spheres. Sensors and Actuators B: Chemical, 2016, 237, 423-430.	4.0	137
4	<i>Operando</i> pH Measurements Decipher H ⁺ /Zn ²⁺ Intercalation Chemistry in High-Performance Aqueous Zn/Î-V ₂ O ₅ Batteries. ACS Energy Letters, 2020, 5, 2979-2986.	8.8	126
5	Acetone sensing performances based on nanoporous TiO2 synthesized by a facile hydrothermal method. Sensors and Actuators B: Chemical, 2017, 238, 491-500.	4.0	115
6	Calcium vanadate sub-microfibers as highly reversible host cathode material for aqueous zinc-ion batteries. Chemical Communications, 2019, 55, 2265-2268.	2.2	111
7	Combustion synthesis of porous Pt-functionalized SnO ₂ sheets for isopropanol gas detection with a significant enhancement in response. Journal of Materials Chemistry A, 2014, 2, 20089-20095.	5.2	106
8	High-Power Na-Ion and K-Ion Hybrid Capacitors Exploiting Cointercalation in Graphite Negative Electrodes. ACS Energy Letters, 2019, 4, 2675-2682.	8.8	88
9	A general nonaqueous sol-gel route to g-C3N4-coupling photocatalysts: the case of Z-scheme g-C3N4/TiO2 with enhanced photodegradation toward RhB under visible-light. Scientific Reports, 2016, 6, 39531.	1.6	85
10	A high-performance n-butanol gas sensor based on ZnO nanoparticles synthesized by a low-temperature solvothermal route. RSC Advances, 2015, 5, 54372-54378.	1.7	74
11	Ni 3 S 2 @Ni foam 3D electrode prepared via chemical corrosion by sodium sulfide and using in hydrazine electro-oxidation. Electrochimica Acta, 2016, 213, 730-739.	2.6	69
12	Ag–ZnO heterostructure nanoparticles with plasmon-enhanced catalytic degradation for Congo red under visible light. RSC Advances, 2015, 5, 34456-34465.	1.7	65
13	The xylene sensing performance of WO ₃ decorated anatase TiO ₂ nanoparticles as a sensing material for a gas sensor at a low operating temperature. RSC Advances, 2016, 6, 49692-49701.	1.7	53
14	Electrochemical intercalation of anions in graphite for high-voltage aqueous zinc battery. Journal of Power Sources, 2020, 449, 227594.	4.0	52
15	Controllable synthesis and change of emission color from green to orange of ZnO quantum dots using different solvents. New Journal of Chemistry, 2015, 39, 2881-2888.	1.4	50
16	Prototype rechargeable magnesium batteries using ionic liquid electrolytes. Journal of Power Sources, 2019, 423, 52-59.	4.0	48
17	Binder-free NiO@MnO 2 core-shell electrode: Rod-like NiO core prepared through corrosion by oxalic acid and enhanced pseudocapacitance with sphere-like MnO 2 shell. Electrochimica Acta, 2016, 189, 83-92.	2.6	47
18	High-Voltage Operation of a V ₂ O ₅ Cathode in a Concentrated Gel Polymer Electrolyte for High-Energy Aqueous Zinc Batteries. ACS Applied Materials & Interfaces, 2020, 12, 15305-15312.	4.0	45

Xu Liu

#	Article	IF	CITATIONS
19	Optical and gas sensing properties of Al-doped ZnO transparent conducting films prepared by sol–gel method under different heat treatments. Ceramics International, 2014, 40, 9931-9939.	2.3	43
20	Niobium Doping Effects on Performance of BaCo _{0.7} Fe _{0.3â^'<i>x</i>} Nb _{<i>x</i>} O _{3â^'Î} Perovskite. Journal of Physical Chemistry C, 2010, 114, 22338-22345.	1.5	39
21	Unveiling the Intricate Intercalation Mechanism in Manganese Sesquioxide as Positive Electrode in Aqueous Znâ€Metal Battery. Advanced Energy Materials, 2021, 11, 2100962.	10.2	39
22	Highly Reversible Sodiation of Tin in Glyme Electrolytes: The Critical Role of the Solid Electrolyte Interphase and Its Formation Mechanism. ACS Applied Materials & Interfaces, 2020, 12, 3697-3708.	4.0	37
23	Alkoxy-functionalized ionic liquid electrolytes: understanding ionic coordination of calcium ion speciation for the rational design of calcium electrolytes. Energy and Environmental Science, 2020, 13, 2559-2569.	15.6	36
24	TiO2 nanoparticles functionalized by Pd nanoparticles for gas-sensing application with enhanced butane response performances. Scientific Reports, 2017, 7, 7692.	1.6	35
25	A one-step nonaqueous sol–gel route to mixed-phase TiO ₂ with enhanced photocatalytic degradation of Rhodamine B under visible light. CrystEngComm, 2016, 18, 1964-1975.	1.3	33
26	Butane detection: W-doped TiO ₂ nanoparticles for a butane gas sensor with high sensitivity and fast response/recovery. RSC Advances, 2015, 5, 96539-96546.	1.7	26
27	Microstructure and properties of novel SPEEK/PVDF-g-PSSA blends for proton exchange membrane with improved compatibility. RSC Advances, 2015, 5, 69621-69628.	1.7	25
28	Highly Concentrated KTFSI : Glyme Electrolytes for K/Bilayeredâ€V ₂ O ₅ Batter Batteries and Supercaps, 2020, 3, 261-267.	ies. 2.4	25
29	Portably colorimetric paper sensor based on ZnS quantum dots for semi-quantitative detection of Co2+ through the measurement of grey level. Sensors and Actuators B: Chemical, 2018, 260, 1068-1075.	4.0	24
30	Grey level replaces fluorescent intensity: Fluorescent paper sensor based on ZnO nanoparticles for quantitative detection of Cu2+ without photoluminescence spectrometer. Sensors and Actuators B: Chemical, 2018, 255, 2356-2366.	4.0	24
31	An Alternative Charge-Storage Mechanism for High-Performance Sodium-Ion and Potassium-Ion Anodes. ACS Energy Letters, 2021, 6, 915-924.	8.8	21
32	Ag-Functionalized macro-/mesoporous AZO synthesized by solution combustion for VOCs gas sensing application. RSC Advances, 2016, 6, 101304-101312.	1.7	20
33	Glyme-Based Electrolyte for Na/Bilayered-V2O5 Batteries. ACS Applied Energy Materials, 2019, 2, 2786-2793.	2.5	20
34	Macro-/nanoporous Al-doped ZnO via self-sustained decomposition of metal-organic complexes for application in degradation of Congo red. Ceramics International, 2016, 42, 18914-18924.	2.3	14
35	Evaluation of counter and reference electrodes for the investigation of Ca battery materials. Journal of Power Sources Advances, 2020, 2, 100008.	2.6	14
36	WÃ s srige Hochleistungsbatterien: Herausforderungen und Strategien. Angewandte Chemie, 2021, 133, 608-626.	1.6	14

Xu Liu

#	Article	IF	CITATIONS
37	From Water and Ni Foam to a Ni(OH) ₂ @Ni Foam Binderâ€Free Supercapacitor Electrode: A Green Corrosion Route. ChemElectroChem, 2018, 5, 434-444.	1.7	12
38	Cathode–Electrolyte Interphase in a LiTFSI/Tetraglyme Electrolyte Promoting the Cyclability of V2O5. ACS Applied Materials & Interfaces, 2020, 12, 54782-54790.	4.0	12
39	Simple point contact WO3 sensor for NO2 sensing and relevant impedance analysis. International Journal of Minerals, Metallurgy and Materials, 2012, 19, 1142-1148.	2.4	9
40	Potassium sulphate (K 2 SO 4) activation of chestnut shell to oxygenâ€enriched porous carbons with enhanced capacitive properties. International Journal of Energy Research, 2020, 44, 5385-5396.	2.2	8
41	Molecular Insight into Microstructural and Dynamical Heterogeneities in Magnesium Ionic Liquid Electrolytes. Journal of Physical Chemistry Letters, 2022, 13, 105-111.	2.1	8
42	Combustion synthesized hierarchically porous Mn ₃ O ₄ for catalytic degradation of methyl orange. Canadian Journal of Chemical Engineering, 2017, 95, 643-647.	0.9	6
43	From Water and Ni Foam to a Ni(OH)2 @Ni Foam Binder-Free Supercapacitor Electrode: A Green Corrosion Route. ChemElectroChem, 2018, 5, 409-409.	1.7	4
44	Facile Preparation of Well-Dispersed GO-SPEEK Composite Membranes by Electrospun for Fuel Cell Applications. Materials Research Society Symposia Proceedings, 2015, 1735, 32.	0.1	0