Barbara C Kahl

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/74353/publications.pdf Version: 2024-02-01

RADRADA C KAHL

#	Article	IF	CITATIONS
1	Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nature Reviews Microbiology, 2006, 4, 295-305.	28.6	1,004
2	The Epidemic of Extended-Spectrum-β-Lactamase-Producing Escherichia coli ST131 Is Driven by a Single Highly Pathogenic Subclone, <i>H</i> 30-Rx. MBio, 2013, 4, e00377-13.	4.1	380
3	Staphylococcus aureus Panton-Valentine Leukocidin Is a Very Potent Cytotoxic Factor for Human Neutrophils. PLoS Pathogens, 2010, 6, e1000715.	4.7	356
4	Clinical Significance and Pathogenesis of Staphylococcal Small Colony Variants in Persistent Infections. Clinical Microbiology Reviews, 2016, 29, 401-427.	13.6	265
5	<i>Staphylococcus aureus</i> RN6390 Replicates and Induces Apoptosis in a Pulmonary Epithelial Cell Line. Infection and Immunity, 2000, 68, 5385-5392.	2.2	189
6	Staphylococcus aureus Small Colony Variants (SCVs): a road map for the metabolic pathways involved in persistent infections. Frontiers in Cellular and Infection Microbiology, 2014, 4, 99.	3.9	189
7	Staphylococcal Small Colony Variants Have Novel Mechanisms for Antibiotic Resistance. Clinical Infectious Diseases, 1998, 27, S68-S74.	5.8	172
8	Population Dynamics of Persistent Staphylococcus aureus Isolated from the Airways of Cystic Fibrosis Patients during a 6-Year Prospective Study. Journal of Clinical Microbiology, 2003, 41, 4424-4427.	3.9	161
9	Antibiotic activity against small-colony variants of Staphylococcus aureus: review of in vitro, animal and clinical data. Journal of Antimicrobial Chemotherapy, 2013, 68, 1455-1464.	3.0	154
10	Multiple virulence factors are required for Staphylococcus aureus-induced apoptosis in endothelial cells. Cellular Microbiology, 2005, 7, 1087-1097.	2.1	143
11	In Vivo Mutations of Thymidylate Synthase (Encoded by <i>thyA</i>) Are Responsible for Thymidine Dependency in Clinical Small-Colony Variants of <i>Staphylococcus aureus</i> . Journal of Bacteriology, 2008, 190, 834-842.	2.2	113
12	Pseudomonas aeruginosa Utilizes Host-Derived Itaconate to Redirect Its Metabolism to Promote Biofilm Formation. Cell Metabolism, 2020, 31, 1091-1106.e6.	16.2	109
13	Thymidine-Dependent Staphylococcus aureus Small-Colony Variants Are Associated with Extensive Alterations in Regulator and Virulence Gene Expression Profiles. Infection and Immunity, 2005, 73, 4119-4126.	2.2	105
14	Variation of the Polymorphic Region X of the Protein A Gene during Persistent Airway Infection of Cystic Fibrosis Patients Reflects Two Independent Mechanisms of Genetic Change in Staphylococcus aureus. Journal of Clinical Microbiology, 2005, 43, 502-505.	3.9	104
15	Increased Frequency of Genomic Alterations inStaphylococcus aureusduring Chronic Infection Is in Part Due to Phage Mobilization. Journal of Infectious Diseases, 2004, 189, 724-734.	4.0	99
16	Small colony variants (SCVs) of Staphylococcus aureus – A bacterial survival strategy. Infection, Genetics and Evolution, 2014, 21, 515-522.	2.3	98
17	Thymidine-Dependent Small-Colony Variants of Staphylococcus aureus Exhibit Gross Morphological and Ultrastructural Changes Consistent with Impaired Cell Separation. Journal of Clinical Microbiology, 2003, 41, 410-413.	3.9	89
18	Impact of Staphylococcus aureus on the pathogenesis of chronic cystic fibrosis lung disease. International Journal of Medical Microbiology, 2010, 300, 514-519.	3.6	88

#	Article	IF	CITATIONS
19	Extended Staphylococcus aureus persistence in cystic fibrosis is associated with bacterial adaptation. International Journal of Medical Microbiology, 2013, 303, 685-692.	3.6	83
20	Prevalence of Scedosporium species and Lomentospora prolificans in patients with cystic fibrosis in a multicenter trial by use of a selective medium. Journal of Cystic Fibrosis, 2015, 14, 237-241.	0.7	81
21	The Thymidine-Dependent Small-Colony-Variant Phenotype Is Associated with Hypermutability and Antibiotic Resistance in Clinical <i>Staphylococcus aureus</i> Isolates. Antimicrobial Agents and Chemotherapy, 2008, 52, 2183-2189.	3.2	73
22	Bloodstream Infections Caused by Small olony Variants of Coagulaseâ€Negative Staphylococci Following Pacemaker Implantation. Clinical Infectious Diseases, 1999, 29, 932-934.	5.8	72
23	Staphylococcus aureus induces an itaconate-dominated immunometabolic response that drives biofilm formation. Nature Communications, 2021, 12, 1399.	12.8	72
24	The clinical impact of livestock-associated methicillin-resistant Staphylococcus aureus of the clonal complex 398 for humans. Veterinary Microbiology, 2017, 200, 33-38.	1.9	71
25	Inactivation of <i>thyA</i> in Staphylococcus aureus Attenuates Virulence and Has a Strong Impact on Metabolism and Virulence Gene Expression. MBio, 2014, 5, e01447-14.	4.1	70
26	Factors Associated with Worse Lung Function in Cystic Fibrosis Patients with Persistent Staphylococcus aureus. PLoS ONE, 2016, 11, e0166220.	2.5	70
27	Staphylococcus aureus small colony variants show common metabolic features in central metabolism irrespective of the underlying auxotrophism. Frontiers in Cellular and Infection Microbiology, 2014, 4, 141.	3.9	65
28	Retrospective analysis of antimicrobial resistance and bacterial spectrum of infection in Gabon, Central Africa. BMC Infectious Diseases, 2013, 13, 455.	2.9	63
29	Predictive Diagnostics for Escherichia coli Infections Based on the Clonal Association of Antimicrobial Resistance and Clinical Outcome. Journal of Clinical Microbiology, 2013, 51, 2991-2999.	3.9	62
30	Non- spa -Typeable Clinical Staphylococcus aureus Strains Are Naturally Occurring Protein A Mutants. Journal of Clinical Microbiology, 2009, 47, 3624-3629.	3.9	61
31	Lack of Sphingosine Causes Susceptibility to Pulmonary Staphylococcus Aureus Infections in Cystic Fibrosis. Cellular Physiology and Biochemistry, 2016, 38, 2094-2102.	1.6	59
32	High-level resistance to meropenem in clinical isolates of Pseudomonas aeruginosa in the absence of carbapenemases: role of active efflux and porin alterations. International Journal of Antimicrobial Agents, 2016, 48, 740-743.	2.5	55
33	Staphylococcus aureus in the airways of cystic fibrosis patients - A retrospective long-term study. International Journal of Medical Microbiology, 2018, 308, 631-639.	3.6	53
34	Thymidine-Dependent Staphylococcus aureus Small-Colony Variants Are Induced by Trimethoprim-Sulfamethoxazole (SXT) and Have Increased Fitness during SXT Challenge. Antimicrobial Agents and Chemotherapy, 2015, 59, 7265-7272.	3.2	50
35	Dynamic in vivo mutations within the ica operon during persistence of Staphylococcus aureus in the airways of cystic fibrosis patients. PLoS Pathogens, 2016, 12, e1006024.	4.7	50
36	High phenotypic diversity in infecting but not in colonizing <i>Staphylococcus aureus</i> populations. Environmental Microbiology, 2007, 9, 3134-3142.	3.8	49

#	Article	IF	CITATIONS
37	Staphylococcus aureus small colony variants are resistant to the antimicrobial peptide lactoferricin B. Journal of Antimicrobial Chemotherapy, 2005, 56, 1126-1129.	3.0	44
38	Characterization of Clinical <i>Enterococcus faecalis</i> Small-Colony Variants. Journal of Clinical Microbiology, 2009, 47, 2802-2811.	3.9	44
39	Antimicrobial Susceptibility of Pseudomonas aeruginosa Isolated from Cystic Fibrosis Patients in Northern Europe. Antimicrobial Agents and Chemotherapy, 2016, 60, 6735-6741.	3.2	43
40	Enhanced Post-Stationary-Phase Survival of a Clinical Thymidine-Dependent Small-Colony Variant of Staphylococcus aureus Results from Lack of a Functional Tricarboxylic Acid Cycle. Journal of Bacteriology, 2007, 189, 2936-2940.	2.2	42
41	Acquired resistance to macrolides in <i>Pseudomonas aeruginosa</i> from cystic fibrosis patients. European Respiratory Journal, 2017, 49, 1601847.	6.7	42
42	Evaluation of Two Chromogenic Agar Media for Recovery and Identification of Staphylococcus aureus Small-Colony Variants. Journal of Clinical Microbiology, 2005, 43, 1956-1959.	3.9	40
43	Increased Prevalence and Resistance of Important Pathogens Recovered from Respiratory Specimens of Cystic Fibrosis Patients During a Decade. Pediatric Infectious Disease Journal, 2015, 34, 700-705.	2.0	40
44	High Nuclease Activity of Long Persisting Staphylococcus aureus Isolates Within the Airways of Cystic Fibrosis Patients Protects Against NET-Mediated Killing. Frontiers in Immunology, 2019, 10, 2552.	4.8	37
45	Mechanisms of intrinsic resistance and acquired susceptibility of Pseudomonas aeruginosa isolated from cystic fibrosis patients to temocillin, a revived antibiotic. Scientific Reports, 2017, 7, 40208.	3.3	34
46	The Length of the Staphylococcus aureus Protein A Polymorphic Region Regulates Inflammation: Impact on Acute and Chronic Infection. Journal of Infectious Diseases, 2012, 206, 81-90.	4.0	32
47	Avibactam confers susceptibility to a large proportion of ceftazidime-resistantPseudomonas aeruginosaisolates recovered from cystic fibrosis patients. Journal of Antimicrobial Chemotherapy, 2015, 70, 1596-1598.	3.0	27
48	CMV-DNA detection in parenchymatous organs in cases of SIDS. International Journal of Legal Medicine, 1995, 107, 291-295.	2.2	25
49	agr -Dependent Bacterial Interference Has No Impact on Long-Term Colonization of Staphylococcus aureus during Persistent Airway Infection of Cystic Fibrosis Patients. Journal of Clinical Microbiology, 2003, 41, 5199-5201.	3.9	24
50	Nasal <i>Staphylococcus aureus</i> Carriage Is Not a Risk Factor for Lower-Airway Infection in Young Cystic Fibrosis Patients. Journal of Clinical Microbiology, 2007, 45, 2979-2984.	3.9	24
51	In vivo competition and horizontal gene transfer among distinct Staphylococcus aureus lineages as major drivers for adaptational changes during long-term persistence in humans. BMC Microbiology, 2018, 18, 152.	3.3	24
52	Comparative in vitro activity of finafloxacin against staphylococci displaying normal and small colony variant phenotypes. Journal of Antimicrobial Chemotherapy, 2011, 66, 2809-2813.	3.0	23
53	Prevalence and persistence of Escherichia coli in the airways of cystic fibrosis patients—An unrecognized CF pathogen?. International Journal of Medical Microbiology, 2014, 304, 415-421.	3.6	21
54	Microarrayâ€based identification of human antibodies against <i>Staphylococcus aureus</i> antigens. Proteomics - Clinical Applications, 2015, 9, 1003-1011.	1.6	21

#	Article	IF	CITATIONS
55	Adaptation of Staphylococcus aureus to Airway Environments in Patients With Cystic Fibrosis by Upregulation of Superoxide Dismutase M and Iron-Scavenging Proteins. Journal of Infectious Diseases, 2018, 217, 1453-1461.	4.0	20
56	Transcriptional adaptations during long-term persistence of Staphylococcus aureus in the airways of a cystic fibrosis patient. International Journal of Medical Microbiology, 2015, 305, 38-46.	3.6	19
57	Finding the relevance of antimicrobial stewardship for cystic fibrosis. Journal of Cystic Fibrosis, 2020, 19, 511-520.	0.7	18
58	MICROBIOLOGY: Mayhem in the Lung. Science, 2007, 315, 1082-1083.	12.6	16
59	Chromosomally and Extrachromosomally Mediated High-Level Gentamicin Resistance in Streptococcus agalactiae. Antimicrobial Agents and Chemotherapy, 2016, 60, 1702-1707.	3.2	16
60	A retrospective analysis of the pathogens in the airways of patients with primary ciliary dyskinesia. Respiratory Medicine, 2019, 156, 69-77.	2.9	16
61	Intracellular forms of menadione-dependent small-colony variants of methicillin-resistant Staphylococcus aureus are hypersusceptible to Â-lactams in a THP-1 cell model due to cooperation between vacuolar acidic pH and oxidant species. Journal of Antimicrobial Chemotherapy, 2012, 67, 2873-2881.	3.0	15
62	The prevalence of Staphylococcus aureus with mucoid phenotype in the airways of patients with cystic fibrosis—A prospective study. International Journal of Medical Microbiology, 2019, 309, 283-287.	3.6	15
63	Association of Diverse Staphylococcus aureus Populations with Pseudomonas aeruginosa Coinfection and Inflammation in Cystic Fibrosis Airway Infection. MSphere, 2021, 6, e0035821.	2.9	15
64	Emergence of Respiratory Streptococcus agalactiae Isolates in Cystic Fibrosis Patients. PLoS ONE, 2009, 4, e4650.	2.5	15
65	Importance of superoxide dismutases A and M for protection of <scp><i>Staphylococcus aureus</i></scp> in the oxidative stressful environment of cystic fibrosis airways. Cellular Microbiology, 2020, 22, e13158.	2.1	14
66	Influence of the Protein Kinase C Activator Phorbol Myristate Acetate on the Intracellular Activity of Antibiotics against Hemin- and Menadione-Auxotrophic Small-Colony Variant Mutants of Staphylococcus aureus and Their Wild-Type Parental Strain in Human THP-1 Cells. Antimicrobial Agents and Chemotherapy, 2012, 56, 6166-6174.	3.2	13
67	Phenotypic and Genotypic Characterization of Escherichia coli Causing Urinary Tract Infections in Kidney-Transplanted Patients. Journal of Clinical Medicine, 2019, 8, 988.	2.4	13
68	Interference with Pseudomonas aeruginosa Quorum Sensing and Virulence by the Mycobacterial <i>Pseudomonas</i> Quinolone Signal Dioxygenase AqdC in Combination with the <i>N</i> -Acylhomoserine Lactone Lactonase QsdA. Infection and Immunity, 2019, 87, .	2.2	12
69	Gram Staining: a Comparison of Two Automated Systems and Manual Staining. Journal of Clinical Microbiology, 2020, 58, .	3.9	12
70	Staphylococcus aureus and Cystic Fibrosis—A Close Relationship. What Can We Learn from Sequencing Studies?. Pathogens, 2021, 10, 1177.	2.8	12
71	Reduced Immunoglobulin (Ig) G Response to Staphylococcus aureus in STAT3 Hyper-IgE Syndrome. Clinical Infectious Diseases, 2017, 64, 1279-1282.	5.8	10
72	Male kidney allograft recipients at risk for urinary tract infection?. PLoS ONE, 2017, 12, e0188262.	2.5	10

#	Article	IF	CITATIONS
73	Staphylococcus aureus Pathogenicity in Cystic Fibrosis Patients—Results from an Observational Prospective Multicenter Study Concerning Virulence Genes, Phylogeny, and Gene Plasticity. Toxins, 2020, 12, 279.	3.4	9
74	Antibiotic Treatment and Age Are Associated With Staphylococcus aureus Carriage Profiles During Persistence in the Airways of Cystic Fibrosis Patients. Frontiers in Microbiology, 2020, 11, 230.	3.5	9
75	Role of Efflux in Antibiotic Resistance of Achromobacter xylosoxidans and Achromobacter insuavis Isolates From Patients With Cystic Fibrosis. Frontiers in Microbiology, 2022, 13, 762307.	3.5	9
76	Allergic Reactions to Serine Protease-Like Proteins of Staphylococcus aureus. Frontiers in Immunology, 2021, 12, 651060.	4.8	8
77	Fatal infections caused by methicillinâ€resistant Staphylococcus aureus of clonal complex 398: case presentations and molecular epidemiology. JMM Case Reports, 2015, 2, .	1.3	7
78	An Innovative Protocol for Metaproteomic Analyses of Microbial Pathogens in Cystic Fibrosis Sputum. Frontiers in Cellular and Infection Microbiology, 2021, 11, 724569.	3.9	6
79	The Virulence Potential of Livestock-Associated Methicillin-Resistant Staphylococcus aureus Cultured from the Airways of Cystic Fibrosis Patients. Toxins, 2020, 12, 360.	3.4	5
80	Assessment of Microbiological Diagnostic Procedures for Respiratory Specimens from Cystic Fibrosis Patients in German Laboratories by Use of a Questionnaire. Journal of Clinical Microbiology, 2014, 52, 977-979.	3.9	4
81	Correlations of Host and Bacterial Characteristics with Clinical Parameters and Survival in Staphylococcus aureus Bacteremia. Journal of Clinical Medicine, 2021, 10, 1371.	2.4	3