List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7435227/publications.pdf Version: 2024-02-01

KENII NAKAMIIDA

#	Article	IF	CITATIONS
1	Dynamic analysis of interior permanent magnet motor based on a magnetic circuit model. IEEE Transactions on Magnetics, 2003, 39, 3250-3252.	2.1	53
2	Dynamic simulation model of switched reluctance generator. IEEE Transactions on Magnetics, 2003, 39, 3253-3255.	2.1	47
3	Dynamic Analysis of Planetary-Type Magnetic Gear Based on Reluctance Network Analysis. IEEE Transactions on Magnetics, 2011, 47, 2414-2417.	2.1	45
4	Characteristics of 8/6 Switched Reluctance Generator Excited by Suppression Resistor Converter. IEEE Transactions on Magnetics, 2006, 42, 3458-3460.	2.1	39
5	A Novel Switched Reluctance Motor With the Auxiliary Windings and Permanent Magnets. IEEE Transactions on Magnetics, 2012, 48, 3855-3858.	2.1	39
6	Electromechanical coupling factors of single-domain 0.67Pb(Mg1â^•3Nb2â^•3)O3–0.33PbTiO3 single-crystal thin films. Applied Physics Letters, 2006, 88, 122903.	3.3	38
7	Analysis of orthogonal-core type linear variable inductor and application to VAr compensator. IEEE Transactions on Magnetics, 2000, 36, 3565-3567.	2.1	36
8	Electromagnetic and motion-coupled analysis for switched reluctance motor based on reluctance network analysis. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 1309-1312.	2.3	35
9	Optimization of a Switched Reluctance Motor Made of Permendur. IEEE Transactions on Magnetics, 2010, 46, 1311-1314.	2.1	31
10	Super-Multipolar Permanent Magnet Reluctance Generator Designed for Small-Scale Wind-Turbine Generation. IEEE Transactions on Magnetics, 2012, 48, 3311-3314.	2.1	28
11	A multipolar SR motor and its application in EV. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 1338-1342.	2.3	25
12	A Method for Calculating Iron Loss of an SR Motor Based on Reluctance Network Analysis and Comparison of Symmetric and Asymmetric Excitation. IEEE Transactions on Magnetics, 2006, 42, 3440-3442.	2.1	23
13	Performance improvement of magnetic gear and efficiency comparison with conventional mechanical gear. Journal of Applied Physics, 2014, 115, 17A314.	2.5	23
14	A design of axial-gap switched reluctance motor for in-wheel direct-drive EV. , 2012, , .		22
15	Design of outer-rotor type multipolar SR motor for electric vehicle. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 1334-1337.	2.3	18
16	Consideration of Eddy Current Loss Estimation in SPM Motor Based on Electric and Magnetic Networks. IEEE Transactions on Magnetics, 2012, 48, 3108-3111.	2.1	18
17	A method for optimizing the design of SPM type magnetic gear based on reluctance network analysis. , 2012, , .		18
18	Electromagnetic and Thermal Coupled Analysis of Ferrite Orthogonal-Core Based on Three-Dimensional Reluctance and Thermal-Resistance Network Model. IEEE Transactions on Magnetics, 2004, 40, 2050-2052.	2.1	17

#	Article	IF	CITATIONS
19	Operation Analysis for Electrical Machinery Based on Reluctance Network. IEEJ Transactions on Fundamentals and Materials, 2006, 126, 150-156.	0.2	17
20	A new nonlinear magnetic circuit model for dynamic analysis of interior permanent magnet synchronous motor. Journal of Magnetism and Magnetic Materials, 2005, 290-291, 1313-1317.	2.3	16
21	A novel switched reluctance motor with wound-cores put on stator and rotor poles. IEEE Transactions on Magnetics, 2005, 41, 3919-3921.	2.1	16
22	A Method for Calculating Eddy Current Loss Distribution Based on Reluctance Network Analysis. IEEE Transactions on Magnetics, 2011, 47, 4155-4158.	2.1	15
23	Characteristics of a novel switched reluctance motor having permanent magnets between the stator pole-tips. , 2007, , .		14
24	Iron Loss Calculation in a Three-Phase-Laminated-Core Variable Inductor Based on Reluctance Network Analysis. IEEE Transactions on Magnetics, 2009, 45, 4781-4784.	2.1	14
25	Basic Characteristics of Lap-Winding type Three-Phase Laminated-Core Variable Inductor. Journal of the Magnetics Society of Japan, 2014, 38, 174-177.	0.9	14
26	Three-dimensional reluctance network analysis considering an iron loss characteristic for an EIE-core variable inductor. IEEE Transactions on Magnetics, 2005, 41, 4033-4035.	2.1	13
27	Design of outer-rotor-type multipolar switched reluctance motor for electric vehicle. Journal of Applied Physics, 2006, 99, 08R324.	2.5	13
28	Development of a Novel Three-Phase Laminated-Core Variable Inductor for Var Compensation. IEEE Transactions on Magnetics, 2008, 44, 4107-4110.	2.1	13
29	Characteristics of novel flux barrier type outer rotor IPM motor with rare-earth and ferrite magnets. , 2012, , .		13
30	Development of high torque density axial-gap switched reluctance motor for in-wheel direct-drive EV. , 2013, , .		13
31	Dynamic simulation of PM motor drive system based on reluctance network analysis. , 2008, , .		12
32	Reluctance Network Based Dynamic Analysis in Power Magnetics. IEEJ Transactions on Fundamentals and Materials, 2008, 128, 506-510.	0.2	12
33	Experimental Tests and Efficiency Improvement of Surface Permanent Magnet Magnetic Gear. IEEJ Journal of Industry Applications, 2014, 3, 62-67.	1.1	12
34	A Novel Flux-Modulated Type Dual-Axis Motor for Hybrid Electric Vehicles. IEEE Transactions on Magnetics, 2014, 50, 1-4.	2.1	11
35	Development of Concentric-Winding Type Three-Phase Variable Inductor. IEEE Transactions on Magnetics, 2015, 51, 1-4.	2.1	11
36	Investigation of Magnetic Interaction of IPM-Type Magnetic-Geared Motor. IEEE Transactions on Magnetics, 2021, 57, 1-5.	2.1	11

#	Article	IF	CITATIONS
37	Basic consideration of switched reluctance motor with auxiliary windings and permanent magnets. , 2012, , .		10
38	Dynamic Hysteresis Modeling for Magnetic Circuit Analysis by Incorporating Play Model and Cauer's Equivalent Circuit Theory. IEEE Transactions on Magnetics, 2020, 56, 1-6.	2.1	10
39	SPICE simulation of SRM considering nonlinear magnetization characteristics. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 2003, 142, 50-56.	0.4	9
40	Accuracy Improvement of Magnetic Hysteresis Calculated by LLG Equation. Journal of Physics: Conference Series, 2017, 903, 012048.	0.4	9
41	Three-Phase Reluctance Generator with Permanent Magnets Buried in Stator Core. , 2006, , .		9
42	A Method for Calculating Iron Loss of an SR Motor Based on Reluctance Network Analysis and Comparison of Symmetric and Asymmetric Excitation. , 2006, , .		8
43	Calculation of eddy current loss in permanent magnet motor caused by carrier harmonics based on reluctance network analysis. , 2013, , .		8
44	Magnetic Circuit Model combined with Play Model Obtained from Landau-Lifshitz-Gilbert Equation. Journal of Physics: Conference Series, 2017, 903, 012047.	0.4	8
45	Reluctance Network Model of Three-Phase-Laminated-Core Variable Inductor Considering Magnetic Hysteresis Behavior. IEEE Transactions on Magnetics, 2019, 55, 1-6.	2.1	8
46	Cogging Torque Reduction of Integer Gear Ratio Axial-Flux Magnetic Gear for Wind-Power Generation Application by Using Two New Types of Pole Pieces. IEEE Transactions on Magnetics, 2022, 58, 1-5.	2.1	8
47	Three-dimensional Reluctance Network Analysis of an EIE-Core Variable Inductor and Application to Reactive Power Compensation in a Distribution System. IEEJ Transactions on Fundamentals and Materials, 2008, 128, 511-516.	0.2	7
48	Stator-Permanent-Magnet Reluctance Generator using Ferrite Magnet for Small-Scale Renewable Energy Generation. EPE Journal (European Power Electronics and Drives Journal), 2010, 20, 31-36.	0.7	7
49	Magnetic-Circuit-Based Iron Loss Estimation Under Square Wave Excitation With Various Duty Ratios. IEEE Transactions on Magnetics, 2013, 49, 3997-4000.	2.1	7
50	Development of 72/96-Pole Rare-Earth Free Permanent Magnet Reluctance Generator for Small-Scale Renewable Power Generation. IEEJ Journal of Industry Applications, 2014, 3, 41-46.	1.1	7
51	Comparison of Two Different Interior Permanent Magnet Type Low-speed Rotor Structures of Axial-Flux Magnetic Gear. IEEJ Journal of Industry Applications, 2021, 10, 632-637.	1.1	7
52	Efficiency Optimization of SPM Motor Considering Carrier Harmonics Based on Electric and Magnetic Networks. IEEJ Journal of Industry Applications, 2014, 3, 422-427.	1.1	7
53	Application of orthogonal-core transformer to series compensation for power system. IEEE Transactions on Magnetics, 2001, 37, 2858-2861.	2.1	6
54	Development of a new two-dimensional position-sensitive detection based on resistive charge division and using CdTe detectors for a high-resolution semiconductor-based PET scanning. Nuclear Instruments and Methods in Physics Research, Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 2011, 631, 138-143.	1.6	6

#	Article	IF	CITATIONS
55	Proposal and Verification of Torque Equation of IPM-Type Magnetic-Geared Motor. IEEJ Journal of Industry Applications, 2021, 10, 612-617.	1.1	6
56	Three-Phase Reluctance Generator with Permanent Magnets Buried in Stator Core. , 2006, , .		5
57	Development of a Switched Reluctance Motor made of Permendur. Journal of Physics: Conference Series, 2011, 266, 012067.	0.4	5
58	Basic Characteristics of In-Wheel Magnetic-Geared Motors. Journal of the Magnetics Society of Japan, 2015, 39, 29-32.	0.9	5
59	Efficiency Improvement of In-Wheel Magnetic Geared Motor and Feasibility Study for Walking Support Machines. , 2019, , .		5
60	A Novel Control Method for In-wheel SR Motor to Implement Torque Vectoring Control for Compact EV. IEEJ Journal of Industry Applications, 2021, 10, 708-717.	1.1	5
61	Electric and magnetic simultaneous transient analysis method of switched reluctance motor for use on SPICE. , 0, , .		4
62	Loss analysis and performance improvement of trial SPM type magnetic gear. , 2013, , .		4
63	A Consideration of High-Speed SR Motor for Electric Power Tools. Journal of the Magnetics Society of Japan, 2014, 38, 194-198.	0.9	4
64	A Novel 3-D Concentric-Winding-Type Three-Phase Variable Inductor for Reactive Power Compensation in Electric Power Systems. IEEE Transactions on Magnetics, 2017, 53, 1-4.	2.1	4
65	Reluctance Network Model of Permanent Magnet Synchronous Motor Considering Magnetic Hysteresis Behavior. , 2018, , .		4
66	Magnetic Circuit Model Considering Magnetic Hysteresis. IEEJ Transactions on Fundamentals and Materials, 2014, 134, 243-249.	0.2	4
67	Basic examination of eddy current loss estimation in SPM motor based on electric and magnetic networks. , 2012, , .		3
68	RNA-Based Optimum Design method for SPM type Magnetic Gears. Journal of the Magnetics Society of Japan, 2013, 37, 264-267.	0.9	3
69	Improvements to Efficiency and Reduced Torque Ripple in Axial-Gap PM Motors. Journal of the Magnetics Society of Japan, 2014, 38, 15-19.	0.9	3
70	Evaluation of Influence of Carrier Harmonics of SPM Motor Based on Reluctance Network Analysis. IEEJ Journal of Industry Applications, 2014, 3, 304-309.	1.1	3
71	Dynamic Hysteresis Modeling Taking Skin Effect Into Account for Magnetic Circuit Analysis and Validation for Various Core Materials. IEEE Transactions on Magnetics, 2022, 58, 1-12.	2.1	3
72	Simulation of IPM motor with current vector control drive and DTC drive by nonlinear magnetic circuit model. , 2008, , .		2

#	Article	IF	CITATIONS
73	Design for size and weight reduction of lap-winding type three-phase variable inductor. Journal of Applied Physics, 2015, 117, 17D523.	2.5	2
74	Hysteresis Modeling of Magnetic Devices based on Reluctance Network Analysis. , 2018, , .		2
75	A Novel Control Method for In-wheel SR Motor to Implement Torque Vectoring Control for Compact EV. , 2020, , .		2
76	SPICE Simulation of a SRM Considering the Nonlinear Magnetization Characteristics. IEEJ Transactions on Industry Applications, 2002, 122, 16-21.	0.2	1
77	Dynamic analysis of interior permanent magnet motor based on a magnetic circuit model. , 0, , .		1
78	A Method for Calculating Iron Loss of a Switched Reluctance Motor Based on Reluctance Network Analysis. , 2006, , .		1
79	Characteristics of 8/6 Switched Reluctance Generator Excited by Suppresion Resister Converter. , 2006, , .		1
80	Experimental verification of performance of a switched reluctance motor made of permendur. , 2010, ,		1
81	Super-multipolar permanent magnet reluctance generator designed for small-scale renewable energy generation. , 2012, , .		1
82	Experimental Evaluation of Characteristics of SR Motor Made of Permendur. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 2014, 187, 51-57.	0.4	1
83	Magnetic Circuit Model Considering Magnetic Hysteresis. Electrical Engineering in Japan (English) Tj ETQq1 1 0.	784314 rg 0.4	BT1Overlock
84	Iron Loss Calculation for Concentric-Winding Type Three-Phase Variable Inductor based on Reluctance Network Analysis. Journal of the Magnetics Society of Japan, 2016, 40, 67-70.	0.9	1
85	Development of High-Speed Switched Reluctance Motor for Electric Power Tools. Journal of Physics: Conference Series, 2017, 903, 012040.	0.4	1
86	Development of in-wheel magnetic-geared motor for walking support machines. International Journal of Applied Electromagnetics and Mechanics, 2020, 64, 157-163.	0.6	1
87	A Method for Calculating Iron Loss of a Switched Reluctance Motor Based on Reluctance Network Analysis. , 2006, , .		1
88	Experimental Evaluation of Characteristics of SR Motor Made of Permendur. IEEJ Transactions on Industry Applications, 2012, 132, 458-463.	0.2	1
89	Influence of Pole-Pieces on Characteristics in Planetary Type Magnetic Gear. IEEJ Transactions on Fundamentals and Materials, 2014, 134, 416-421.	0.2	1
90	Unified Calculation Method for Motor Torque in Reluctance Network Analysis. IEEJ Transactions on Industry Applications, 2015, 135, 1063-1069.	0.2	1

#	Article	IF	CITATIONS
91	Development of spoke-type IPM magnetic gear. International Journal of Applied Electromagnetics and Mechanics, 2020, 64, 771-778.	0.6	1
92	Loss reduction of outer-rotor type high-speed interior permanent magnet motors. International Journal of Applied Electromagnetics and Mechanics, 2020, 64, 861-868.	0.6	1
93	Proposed and Verification of Torque Equation of IPM-type Magnetic-Geared. , 2020, , .		1
94	Dynamic simulation model of switched reluctance generator. , 0, , .		0
95	Analysis of Operating Characteristics of Ferrite Orthogonal-Core Type Variable Inductor Based on Three-Dimensional Nonlinear Magnetic Circuit Considering the Iron Loss. IEEJ Transactions on Industry Applications, 2003, 123, 386-391.	0.2	0
96	Calculation of Characteristics of an SR Motor with Divided Stator Cores Considering the Influence of Micro Air Gaps. , 2006, , .		0
97	Characteristics of 8/6 SR Generator with a Suppression Resistor Converter. , 2006, , .		0
98	Fundamental study of two-dimensional position sensitive CdTe detector for PET camera. , 2008, , .		0
99	Outer-rotor type permanent magnet reluctance generator with high power and low toque ripple. , 2010, , .		0
100	Basic examination of magnetic circuit model incorporating micromagnetic simulation. , 2012, , .		0
101	Iron loss calculation by incorporating LLG equation into magnetic circuit model. , 2013, , .		0
102	Development of concentric-winding type three-phase variable inductor. , 2015, , .		0
103	Basic consideration of winding arrangement of amorphous transformers for MW-class DC-DC converters. , 2015, , .		0
104	VII.High-Efficiency Magnetic Gear and Developing Magnetic-Geared Motor. , 2016, , .		0
105	Unified Calculation Method for Motor Torque in Reluctance Network Analysis. Electrical Engineering in Japan (English Translation of Denki Gakkai Ronbunshi), 2017, 198, 25-33.	0.4	0
106	A novel three-dimensional concentric-winding type three-phase variable inductor for reactive power compensation in electric power systems. , 2017, , .		0
107	Analysis of Dynamic Characteristics of Full-Pitch-Winding Switched Reluctance Motor Based on Reluctance Network Analysis. , 0, , .		0
108	Efficiency Improvement of Magnetic-Geared Motor by Open-Slot and Interior Permanent Magnet Structure , 2018, , .		0

#	Article	IF	CITATIONS
109	Characteristics of 8/6 SR Generator with a Suppression Resistor Converter. , 2006, , .		0

110 3次å...fãfªāf©ã,¯ã,;ãf³ã,¹ãfãffãf¯ãf¯ãf¼ã,¯è§£æžã«ã,~ã,~ãfãf1¼ãf†ã,£ãf¼ã,¹ãf¢ãf¼ã,;ã®è`è``法ã«é-**ϋ**™ã,‹ä,@€f察. IEE

111	Basic Characteristics of 18-leg Three-Phase Laminated-Core Variable Inductor. Journal of the Magnetics Society of Japan, 2012, 36, 253-257.	0.9	0
112	Operation Principle and Basic Characteristics of VR Magnetic Gear. IEEJ Transactions on Industry Applications, 2015, 135, 1100-1106.	0.2	0
113	Recent Topics of Applied Magnetic Technologies in Power Generation System. IEEJ Transactions on Fundamentals and Materials, 2018, 138, 599-604.	0.2	0
114	Recent Topics of Loss Analysis of Power Magnetics Devices based on Equivalent Circuit Method. IEEJ Transactions on Fundamentals and Materials, 2018, 138, 585-591.	0.2	0
115	500kVA Medium-Frequency Core-Type Amorphous Transformers with Alternately Wound Sheet Winding for Offshore DC Grid. IEEJ Journal of Industry Applications, 2019, 8, 756-766.	1.1	Ο
116	Reluctance Network Model of Switched Reluctance Motor Considering Magnetic Hysteresis Behavior. , 2021, , .		0