Kim Handley

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7435045/publications.pdf

Version: 2024-02-01

		159585	168389
54	3,917	30	53
papers	citations	h-index	g-index
60	60	60	6432
00	00	00	0432
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Longitudinal analysis of microbial interaction between humans and the indoor environment. Science, 2014, 345, 1048-1052.	12.6	751
2	Small Genomes and Sparse Metabolisms of Sediment-Associated Bacteria from Four Candidate Phyla. MBio, 2013, 4, e00708-13.	4.1	298
3	Bacterial colonization and succession in a newly opened hospital. Science Translational Medicine, 2017, 9, .	12.4	248
4	IMG/VR: a database of cultured and uncultured DNA Viruses and retroviruses. Nucleic Acids Research, 2016, 45, D457-D465.	14.5	177
5	Metabolic interdependencies between phylogenetically novel fermenters and respiratory organisms in an unconfined aquifer. ISME Journal, 2014, 8, 1452-1463.	9.8	170
6	Genome reduction in an abundant and ubiquitous soil bacterium †Candidatus Udaeobacter copiosus'. Nature Microbiology, 2017, 2, 16198.	13.3	168
7	Short-Read Assembly of Full-Length 16S Amplicons Reveals Bacterial Diversity in Subsurface Sediments. PLoS ONE, 2013, 8, e56018.	2.5	153
8	Metabolic Reconstruction and Modeling Microbial Electrosynthesis. Scientific Reports, 2017, 7, 8391.	3.3	117
9	Lifestyle Evolution in Cyanobacterial Symbionts of Sponges. MBio, 2015, 6, e00391-15.	4.1	103
10	Biostimulation induces syntrophic interactions that impact C, S and N cycling in a sediment microbial community. ISME Journal, 2013, 7, 800-816.	9.8	98
11	Biogeochemical implications of the ubiquitous colonization of marine habitats and redox gradients by Marinobacter species. Frontiers in Microbiology, 2013, 4, 136.	3.5	85
12	Phylogenetic Distribution of Plastic-Degrading Microorganisms. MSystems, 2021, 6, .	3.8	83
13	Vanadate and Acetate Biostimulation of Contaminated Sediments Decreases Diversity, Selects for Specific Taxa, and Decreases Aqueous V ⁵⁺ Concentration. Environmental Science & Samp; Technology, 2013, 47, 6500-6509.	10.0	80
14	Marinobacter santoriniensis sp. nov., an arsenate-respiring and arsenite-oxidizing bacterium isolated from hydrothermal sediment. International Journal of Systematic and Evolutionary Microbiology, 2009, 59, 886-892.	1.7	71
15	Functional diversity of bacteria in a ferruginous hydrothermal sediment. ISME Journal, 2010, 4, 1193-1205.	9.8	71
16	Silicifying Biofilm Exopolymers on a Hot-Spring Microstromatolite: Templating Nanometer-Thick Laminae. Astrobiology, 2008, 8, 747-770.	3.0	69
17	The complete genome sequence for putative <scp>H</scp> ₂ ―and <scp>S</scp> ―oxidizer <scp><i>C</i>><i>C</i>><i>andidatus</i>>Sulfuricurvum sp., assembled <i>de novo</i>from an aquiferâ€derived metagenome. Environmental Microbiology, 2014, 16, 3443-3462.</scp>	3 . 8	69
18	Metabolic potential of fatty acid oxidation and anaerobic respiration by abundant members of Thaumarchaeota and Thermoplasmata in deep anoxic peat. ISME Journal, 2015, 9, 2740-2744.	9.8	69

#	Article	IF	CITATIONS
19	Tracing Biosignature Preservation of Geothermally Silicified Microbial Textures into the Geological Record. Astrobiology, 2015, 15, 858-882.	3.0	68
20	Abiotic-biotic controls on the origin and development of spicular sinter: in situ growth experiments, Champagne Pool, Waiotapu, New Zealand. Geobiology, 2005, 3, 93-114.	2.4	66
21	Responses of Microbial Communities to Hydrocarbon Exposures. Oceanography, 2016, 29, 136-149.	1.0	59
22	Bicarbonate impact on U(VI) bioreduction in a shallow alluvial aquifer. Geochimica Et Cosmochimica Acta, 2015, 150, 106-124.	3.9	58
23	Methods for the extraction, storage, amplification and sequencing of DNA from environmental samples. , 2018, , .		58
24	Speciation and Reactivity of Uranium Products Formed during <i>in Situ</i> Bioremediation in a Shallow Alluvial Aquifer. Environmental Science & Envir	10.0	56
25	PlasticDB: a database of microorganisms and proteins linked to plastic biodegradation. Database: the Journal of Biological Databases and Curation, 2022, 2022, .	3.0	49
26	Redox cycling of arsenic by the hydrothermal marine bacterium <i>Marinobacter santoriniensis</i> Environmental Microbiology, 2009, 11, 1601-1611.	3.8	45
27	High-density PhyloChip profiling of stimulated aquifer microbial communities reveals a complex response to acetate amendment. FEMS Microbiology Ecology, 2012, 81, 188-204.	2.7	43
28	Metabolic and spatio-taxonomic response of uncultivated seafloor bacteria following the Deepwater Horizon oil spill. ISME Journal, 2017, 11, 2569-2583.	9.8	39
29	Divalent metal adsorption by the thermophile Anoxybacillus flavithermus in single and multi-metal systems. Chemical Geology, 2007, 244, 493-506.	3.3	35
30	Effect of iron redox transformations on arsenic solid-phase associations in an arsenic-rich, ferruginous hydrothermal sediment. Geochimica Et Cosmochimica Acta, 2013, 102, 124-142.	3.9	34
31	Tools for successful proliferation: diverse strategies of nutrient acquisition by a benthic cyanobacterium. ISME Journal, 2020, 14, 2164-2178.	9.8	33
32	Disturbed subsurface microbial communities follow equivalent trajectories despite different structural starting points. Environmental Microbiology, 2015, 17, 622-636.	3.8	32
33	A New N -Acyl Homoserine Lactone Synthase in an Uncultured Symbiont of the Red Sea Sponge Theonella swinhoei. Applied and Environmental Microbiology, 2016, 82, 1274-1285.	3.1	30
34	Life at Home and on the Roam: Genomic Adaptions Reflect the Dual Lifestyle of an Intracellular, Facultative Symbiont. MSystems, 2019, 4, .	3.8	30
35	Microbial river-to-sea continuum: gradients in benthic and planktonic diversity, osmoregulation and nutrient cycling. Microbiome, 2021, 9, 190.	11.1	29
36	Characterization of spongeâ€associated <i>Verrucomicrobia</i> : microcompartmentâ€based sugar utilization and enhanced toxin–antitoxin modules as features of hostâ€associated <i>Opitutales</i> Environmental Microbiology, 2020, 22, 4669-4688.	3.8	26

#	Article	IF	Citations
37	Following Rapoport's Rule: the geographic range and genome size of bacterial taxa decline at warmer latitudes. Environmental Microbiology, 2017, 19, 3152-3162.	3.8	25
38	Genomic adaptations enabling Acidithiobacillus distribution across wide-ranging hot spring temperatures and pHs. Microbiome, 2021, 9, 135.	11.1	22
39	Fluctuations in Species-Level Protein Expression Occur during Element and Nutrient Cycling in the Subsurface. PLoS ONE, 2013, 8, e57819.	2.5	21
40	Stromatolitic digitate sinters form under wideâ€ranging physicochemical conditions with diverseÂhot spring microbial communities. Geobiology, 2020, 18, 619-640.	2.4	18
41	Genomic Insights Into the Lifestyles of Thaumarchaeota Inside Sponges. Frontiers in Microbiology, 2020, 11, 622824.	3.5	16
42	Termite gas emissions select for hydrogenotrophic microbial communities in termite mounds. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	7.1	15
43	Functional predictions from inference and observation in sequence-based inflammatory bowel disease research. Genome Biology, 2012, 13, 169.	9.6	14
44	Metabolic Diversity and Aero-Tolerance in Anammox Bacteria from Geochemically Distinct Aquifers. MSystems, 2022, 7, e0125521.	3.8	13
45	Lineage-specific energy and carbon metabolism of sponge symbionts and contributions to the host carbon pool. ISME Journal, 2022, 16, 1163-1175.	9.8	13
46	Estuarine microbial diversity and nitrogen cycling increase along sand–mud gradients independent of salinity and distance. Environmental Microbiology, 2022, 24, 50-65.	3.8	12
47	Functional predictions from inference and observation in sequence-based inflammatory bowel disease research. Genome Biology, 2012, 13, 169.	8.8	11
48	Determining Microbial Roles in Ecosystem Function: Redefining Microbial Food Webs and Transcending Kingdom Barriers. MSystems, 2019, 4, .	3.8	11
49	Genome Streamlining, Plasticity, and Metabolic Versatility Distinguish Co-occurring Toxic and Nontoxic Cyanobacterial Strains of <i>Microcoleus</i> . MBio, 2021, 12, e0223521.	4.1	11
50	Character, Analysis, and Preservation of Biogenicity in Terrestrial Siliceous Stromatolites from Geothermal Settings. Cellular Origin and Life in Extreme Habitats, 2011, , 359-381.	0.3	10
51	From pine to pasture: land use history has long-term impacts on soil bacterial community composition and functional potential. FEMS Microbiology Ecology, 2020, 96, .	2.7	9
52	Biogeochemical controls on microbial diversity in seafloor sulphidic sediments. Geobiology, 2010, 8, 309-326.	2.4	7
53	Genome Sequence of Hydrothermal Arsenic-Respiring Bacterium Marinobacter santoriniensis NKSG1 ^T . Genome Announcements, 2013, 1, .	0.8	5
54	Opportunities for modern genetic technologies to maintain and enhance Aotearoa New Zealand's bioheritage. New Zealand Journal of Ecology, 2020, 44, .	1.1	4