
Michele T Martin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7434722/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	TGF-Î ² 1 and radiation fibrosis: a master switch and a specific therapeutic target?. International Journal of Radiation Oncology Biology Physics, 2000, 47, 277-290.	0.4	602
2	Successful treatment of radiation-induced fibrosis using and Mn-SOD: An experimental study. International Journal of Radiation Oncology Biology Physics, 1996, 35, 305-312.	0.4	145
3	Striking regression of subcutaneous fibrosis induced by high doses of gamma rays using a combination of pentoxifylline and α-tocopherol: an experimental study. International Journal of Radiation Oncology Biology Physics, 1999, 43, 839-847.	0.4	137
4	Temporal Modulation of TGF-β1 and β-Actin Gene Expression in Pig Skin and Muscular Fibrosis after Ionizing Radiation. Radiation Research, 1993, 134, 63.	0.7	130
5	Human Side Population Keratinocytes Exhibit Long-Term Proliferative Potential and a Specific Gene Expression Profile and Can Form a Pluristratified Epidermis. Stem Cells, 2006, 24, 965-974.	1.4	98
6	Low-Dose Exposure to Î ³ Rays Induces Specific Gene Regulations in Normal Human Keratinocytes. Radiation Research, 2005, 163, 623-635.	0.7	96
7	Antifibrotic action of Cu/Zn SOD is mediated by TGF-β1 repression and phenotypic reversion of myofibroblasts. Free Radical Biology and Medicine, 2001, 30, 30-42.	1.3	94
8	Response of normal stem cells to ionizing radiation: A balance between homeostasis and genomic stability. Mutation Research - Reviews in Mutation Research, 2010, 704, 167-174.	2.4	62
9	Abnormal phenotype of cultured fibroblasts in human skin with chronic radiotherapy damage. Radiotherapy and Oncology, 1998, 47, 255-261.	0.3	61
10	Fibronectin and collagen gene expression during in vitro ageing of pig skin fibroblasts. Experimental Cell Research, 1990, 191, 8-13.	1.2	60
11	Cu/Zn superoxide dismutase modulates phenotypic changes in cultured fibroblasts from human skin with chronic radiotherapy damage. Radiotherapy and Oncology, 2001, 58, 325-331.	0.3	58
12	Alteration of Transforming Growth Factor-β1 Response Involves Down-Regulation of Smad3 Signaling in Myofibroblasts from Skin Fibrosis. American Journal of Pathology, 2001, 159, 263-272.	1.9	56
13	Exploring ultrashort high-energy electron-induced damage in human carcinoma cells. Cell Death and Disease, 2010, 1, e73-e73.	2.7	55
14	Sensing radiosensitivity of human epidermal stem cells. Radiotherapy and Oncology, 2007, 83, 267-276.	0.3	54
15	Altered proliferation and differentiation of human epidermis in cases of skin fibrosis after radiotherapy. International Journal of Radiation Oncology Biology Physics, 2002, 53, 385-393.	0.4	48
16	Functional interplay between p63 and p53 controls RUNX1 function in the transition from proliferation to differentiation in human keratinocytes. Cell Death and Disease, 2012, 3, e318-e318.	2.7	44
17	Human epidermal stem cells: Role in adverse skin reactions and carcinogenesis from radiation. Mutation Research - Reviews in Mutation Research, 2016, 770, 349-368.	2.4	42
18	Molecular profile of mouse stromal mesenchymal stem cells. Physiological Genomics, 2007, 29, 128-138.	1.0	40

MICHELE T MARTIN

#	Article	IF	CITATIONS
19	Exploration of the functional hierarchy of the basal layer of human epidermis at the singleâ€cell level using parallel clonal microcultures of keratinocytes. Experimental Dermatology, 2010, 19, 387-392.	1.4	30
20	Fibroblast Growth Factor Type 2 Signaling Is Critical for DNA Repair in Human Keratinocyte Stem Cells. Stem Cells, 2010, 28, 1639-1648.	1.4	29
21	Abnormal Proliferation and Aging of Cultured Fibroblasts From Pigs With Subcutaneous Fibrosis Induced by Gamma Irradiation. Journal of Investigative Dermatology, 1989, 93, 497-500.	0.3	27
22	KLF4 inhibition promotes the expansion of keratinocyte precursors from adult human skin and of embryonic-stem-cell-derived keratinocytes. Nature Biomedical Engineering, 2019, 3, 985-997.	11.6	25
23	Expression profiling of genes and proteins in HaCaT keratinocytes: Proliferating versus differentiated state. Journal of Cellular Biochemistry, 2004, 93, 1048-1062.	1.2	20
24	Activation of an energy providing response in human keratinocytes after Î ³ irradiation. Journal of Cellular Biochemistry, 2005, 95, 620-631.	1.2	19
25	Severe PATCHED1 Deficiency in Cancer-Prone Gorlin Patient Cells Results in Intrinsic Radiosensitivity. International Journal of Radiation Oncology Biology Physics, 2018, 102, 417-425.	0.4	19
26	ld2 Reverses Cell Cycle Arrest Induced by γ-Irradiation in Human HaCaT Keratinocytes. Journal of Biological Chemistry, 2005, 280, 15836-15841.	1.6	18
27	CD98, a novel marker of transient amplifying human keratinocytes. Proteomics, 2005, 5, 3637-3645.	1.3	17
28	Bioengineering a Human Plasma-Based Epidermal Substitute With Efficient Grafting Capacity and High Content in Clonogenic Cells. Stem Cells Translational Medicine, 2015, 4, 643-654.	1.6	16
29	Skin Immunity and Tolerance: Focus on Epidermal Keratinocytes Expressing HLA-G. Frontiers in Immunology, 2021, 12, 772516.	2.2	16
30	GATA3 is a master regulator of the transcriptional response to low-dose ionizing radiation in human keratinocytes. BMC Genomics, 2009, 10, 417.	1.2	14
31	CD98hc (SLC3A2) is a key regulator of keratinocyte adhesion. Journal of Dermatological Science, 2011, 61, 169-179.	1.0	14
32	FGF2 mediates DNA repair in epidermoid carcinoma cells exposed to ionizing radiation. International Journal of Radiation Biology, 2012, 88, 688-693.	1.0	9
33	Human Keratinocytes Inhibit CD4+ T-Cell Proliferation through TGFB1 Secretion and Surface Expression of HLA-G1 and PD-L1 Immune Checkpoints. Cells, 2021, 10, 1438.	1.8	9
34	Radiosensitivity of swine lymphocytes: in vitro modification of the cell cycle and kinetics of the appearance of chromosomal aberrations. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1984, 126, 169-175.	0.4	8
35	Functional Investigations of Keratinocyte Stem Cells and Progenitors at a Single-Cell Level Using Multiparallel Clonal Microcultures. Methods in Molecular Biology, 2010, 585, 13-23.	0.4	8
36	Cellular adhesion on collagen: a simple method to select human basal keratinocytes which preserves their high growth capacity. European Journal of Dermatology, 2011, 21, 12-20.	0.3	7

MICHELE T MARTIN

#	Article	IF	CITATIONS
37	Exposure of Human Skin Organoids to Low Genotoxic Stress Can Promote Epithelial-to-Mesenchymal Transition in Regenerating Keratinocyte Precursor Cells. Cells, 2020, 9, 1912.	1.8	7
38	Chromosomal anomalies in radiation-induced fibrosis in the pig. Mutation Research - Fundamental and Molecular Mechanisms of Mutagenesis, 1992, 284, 257-263.	0.4	6
39	ICRP <i>Publication 131</i> : Stem cell biology with respect to carcinogenesis aspects of radiological protection. Annals of the ICRP, 2016, 45, 239-252.	3.0	6
40	Monitoring the Cycling Activity of Cultured Human Keratinocytes Using a CFSE-Based Dye Tracking Approach. Methods in Molecular Biology, 2013, 989, 83-97.	0.4	4
41	Iterative Three-Dimensional Epidermis Bioengineering and Xenografting to Assess Long-Term Regenerative Potential in Human Keratinocyte Precursor Cells. Methods in Molecular Biology, 2019, 2109, 155-167.	0.4	4
42	When the Search for Stemness Genes Meets the Skin Substitute Bioengineering Field: KLF4 Transcription Factor under the Light. Cells, 2020, 9, 2188.	1.8	4
43	Cellular organization of the human epidermal basal layer: Clues sustaining a hierarchical model. International Journal of Radiation Biology, 2012, 88, 677-681.	1.0	3
44	Investigating human keratinocyte stem cell identity. European Journal of Dermatology, 2011, 21, 4-11.	0.3	2
45	Laser-plasma accelerators-based high energy radiation femtochemistry and spatio-temporal radiation biomedicine. Proceedings of SPIE, 2012, , .	0.8	2
46	Immunosuppressive Properties of Epidermal Keratinocytes Differ According to Their Immaturity Status. Frontiers in Immunology, 2022, 13, 786859.	2.2	2
47	Quantitative Detection of Low-Abundance Transcripts at Single-Cell Level in Human Epidermal Keratinocytes by Digital Droplet Reverse Transcription-Polymerase Chain Reaction. Methods in Molecular Biology, 2018, 1879, 31-41.	0.4	1
48	Impairment of Base Excision Repair in Dermal Fibroblasts Isolated From Nevoid Basal Cell Carcinoma Patients. Frontiers in Oncology, 2020, 10, 1551.	1.3	1
49	NFATC2 Modulates Radiation Sensitivity in Dermal Fibroblasts From Patients With Severe Side Effects of Radiotherapy. Frontiers in Oncology, 2020, 10, 589168.	1.3	1
50	177. International Journal of Radiation Oncology Biology Physics, 2006, 66, S99.	0.4	0