Laura Lasagni

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/743442/publications.pdf

Version: 2024-02-01

81743 106150 7,302 73 39 65 h-index citations g-index papers 76 76 76 7471 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Glomerular stem cells. , 2022, , 321-330.		O
2	The Pathology Lesion Patterns of Podocytopathies: How and why?. Frontiers in Cell and Developmental Biology, 2022, 10, 838272.	1.8	4
3	Particulate kidney extracellular matrix: bioactivity and proteomic analysis of a novel scaffold from porcine origin. Biomaterials Science, 2021, 9, 186-198.	2.6	11
4	Retinoic Acid Benefits Glomerular Organotypic Differentiation from Adult Renal Progenitor Cells In Vitro. Stem Cell Reviews and Reports, 2021, 17, 1406-1419.	1.7	2
5	Molecular Mechanisms of Renal Progenitor Regulation: How Many Pieces in the Puzzle?. Cells, 2021, 10, 59.	1.8	5
6	Coâ€cultures of renal progenitors and endothelial cells on kidney decellularized matrices replicate the renal tubular environment in vitro. Acta Physiologica, 2020, 230, e13491.	1.8	11
7	Acute kidney injury promotes development of papillary renal cell adenoma and carcinoma from renal progenitor cells. Science Translational Medicine, 2020, 12, .	5.8	46
8	Bioengineering strategies for nephrologists: kidney was not built in a day. Expert Opinion on Biological Therapy, 2020, 20, 467-480.	1.4	26
9	Substrate Stiffness Modulates Renal Progenitor Cell Properties via a ROCK-Mediated Mechanotransduction Mechanism. Cells, 2019, 8, 1561.	1.8	23
10	Endocycle-related tubular cell hypertrophy and progenitor proliferation recover renal function after acute kidney injury. Nature Communications, 2018, 9, 1344.	5.8	185
11	CXCL12 blockade preferentially regenerates lostÂpodocytes in cortical nephrons by targetingÂanÂintrinsic podocyte-progenitor feedback mechanism. Kidney International, 2018, 94, 1111-1126.	2.6	69
12	Modeling the Glomerular Filtration Barrier: Are You Kidney-ing Me?. Cell Stem Cell, 2017, 21, 7-9.	5.2	8
13	Evidence for Renal Progenitors in the Human Kidney. , 2016, , 395-406.		O
14	Transgenic Strategies to Study Podocyte Loss and Regeneration. Stem Cells International, 2015, 2015, 1-13.	1,2	9
15	Renal Stem Cells, Tissue Regeneration, and Stem Cell Therapies for Renal Diseases. Stem Cells International, 2015, 2015, 1-2.	1.2	7
16	Human Urine-Derived Renal Progenitors for Personalized Modeling of Genetic Kidney Disorders. Journal of the American Society of Nephrology: JASN, 2015, 26, 1961-1974.	3.0	74
17	Heterogeneous Genetic Alterations in Sporadic Nephrotic Syndrome Associate with Resistance to Immunosuppression. Journal of the American Society of Nephrology: JASN, 2015, 26, 230-236.	3.0	84
18	Stem cell therapy for kidney disease. Expert Opinion on Biological Therapy, 2015, 15, 1455-1468.	1.4	17

#	Article	IF	CITATIONS
19	Podocyte Regeneration Driven by Renal Progenitors Determines Glomerular Disease Remission and Can Be Pharmacologically Enhanced. Stem Cell Reports, 2015, 5, 248-263.	2.3	112
20	Glomerular Regeneration: When Can the Kidney Regenerate from Injury and What Turns Failure into Success. Nephron Experimental Nephrology, 2014, 126, 70-75.	2.4	17
21	Renal progenitors and childhood: from development to disorders. Pediatric Nephrology, 2014, 29, 711-719.	0.9	10
22	Nephrons are generated via a series of committed progenitors. Nature Reviews Nephrology, 2014, 10, 491-491.	4.1	0
23	Retinoids and Glomerular Regeneration. Seminars in Nephrology, 2014, 34, 429-436.	0.6	15
24	Podocyte progenitors and ectopic podocytes. Nature Reviews Nephrology, 2013, 9, 715-716.	4.1	14
25	Renal progenitors: an evolutionary conserved strategy for kidney regeneration. Nature Reviews Nephrology, 2013, 9, 137-146.	4.1	170
26	Podocyte loss involves <scp>MDM2</scp> â€driven mitotic catastrophe. Journal of Pathology, 2013, 230, 322-335.	2.1	57
27	Proteinuria Impairs Podocyte Regeneration by Sequestering Retinoic Acid. Journal of the American Society of Nephrology: JASN, 2013, 24, 1756-1768.	3.0	116
28	Podocyte Mitosis - A Catastrophe. Current Molecular Medicine, 2013, 13, 13-23.	0.6	112
29	Adult Stem Cells in Tissue Homeostasis and Disease. , 2012, , .		2
30	Characterization of Renal Progenitors Committed Toward Tubular Lineage and Their Regenerative Potential in Renal Tubular Injury. Stem Cells, 2012, 30, 1714-1725.	1.4	280
31	Stem Cell Niche in the Kidney. , 2011, , 233-243.		0
32	Notch Activation Differentially Regulates Renal Progenitors Proliferation and Differentiation Toward the Podocyte Lineage in Glomerular Disorders. Stem Cells, 2010, 28, 1674-1685.	1.4	152
33	Novel Strategies of Regenerative Medicine Using Chemical Compounds. Current Medicinal Chemistry, 2010, 17, 4134-4149.	1.2	2
34	Only anti-CD133 antibodies recognizing the CD133/1 or the CD133/2 epitopes can identify human renal progenitors. Kidney International, 2010, 78, 620-621.	2.6	22
35	Glomerular Epithelial Stem Cells. Journal of the American Society of Nephrology: JASN, 2010, 21, 1612-1619.	3.0	113
36	Renal Progenitor Cells Contribute to Hyperplastic Lesions of Podocytopathies and Crescentic Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 2009, 20, 2593-2603.	3.0	173

#	Article	IF	CITATIONS
37	Regeneration of Glomerular Podocytes by Human Renal Progenitors. Journal of the American Society of Nephrology: JASN, 2009, 20, 322-332.	3.0	483
38	The Role of Endothelial Progenitor Cells in Acute Kidney Injury. Blood Purification, 2009, 27, 261-270.	0.9	36
39	Human immature myeloid dendritic cells trigger a TH2-polarizing program via Jagged-1/Notch interaction. Journal of Allergy and Clinical Immunology, 2008, 121, 1000-1005.e8.	1.5	66
40	Stem-cell approaches for kidney repair: choosing the right cells. Trends in Molecular Medicine, 2008, 14, 277-285.	3. 5	87
41	Activation of p38MAPK mediates the angiostatic effect of the chemokine receptor CXCR3-B. International Journal of Biochemistry and Cell Biology, 2008, 40, 1764-1774.	1.2	60
42	Essential but differential role for CXCR4 and CXCR7 in the therapeutic homingof human renal progenitor cells. Journal of Experimental Medicine, 2008, 205, 479-490.	4.2	245
43	Pharmacological Modulation of Stem Cell Function. Current Medicinal Chemistry, 2007, 14, 1129-1139.	1.2	45
44	Regenerative Potential of Embryonic Renal Multipotent Progenitors in Acute Renal Failure. Journal of the American Society of Nephrology: JASN, 2007, 18, 3128-3138.	3.0	194
45	PF-4/CXCL4 and CXCL4L1 exhibit distinct subcellular localization and a differentially regulated mechanism of secretion. Blood, 2007, 109, 4127-4134.	0.6	62
46	Expression of the DNAM-1 ligands, Nectin-2 (CD112) and poliovirus receptor (CD155), on dendritic cells: relevance for natural killer-dendritic cell interaction. Blood, 2006, 107, 2030-2036.	0.6	234
47	Peripheral blood as a source of stem cells for regenerative medicine. Expert Opinion on Biological Therapy, 2006, 6, 193-202.	1.4	15
48	CXCR3 and ÂEÂ7 integrin identify a subset of CD8+ mature thymocytes that share phenotypic and functional properties with CD8+ gut intraepithelial lymphocytes. Gut, 2006, 55, 961-968.	6.1	27
49	Isolation and Characterization of Multipotent Progenitor Cells from the Bowman's Capsule of Adult Human Kidneys. Journal of the American Society of Nephrology: JASN, 2006, 17, 2443-2456.	3.0	648
50	CXCR3 and its binding chemokines in myeloma cells: expression of isoforms and potential relationships with myeloma cell proliferation and survival. Haematologica, 2006, 91, 1489-97.	1.7	59
51	High CXCL10 Expression in Rejected Kidneys and Predictive Role of Pretransplant Serum CXCL10 for Acute Rejection And Chronic Allograft Nephropathy. Transplantation, 2005, 79, 1215-1220.	0.5	86
52	Nephrotic Syndrome and Renal Failure After Allogeneic Stem Cell Transplantation: Novel Molecular Diagnostic Tools for a Challenging Differential Diagnosis. American Journal of Kidney Diseases, 2005, 46, 550-556.	2.1	35
53	CXCR3-mediated opposite effects of CXCL10 and CXCL4 on T1 or T2 cytokine production. Journal of Allergy and Clinical Immunology, 2005, 116, 1372-1379.	1.5	106
54	CD14+CD34lowCells With Stem Cell Phenotypic and Functional Features Are the Major Source of Circulating Endothelial Progenitors. Circulation Research, 2005, 97, 314-322.	2.0	245

#	Article	IF	Citations
55	High Pretransplant Serum Levels of CXCL10/IP-10 Are Related to Increased Risk of Renal Allograft Failure. American Journal of Transplantation, 2004, 4, 1466-1474.	2.6	84
56	CXC chemokines: the regulatory link between inflammation and angiogenesis. Trends in Immunology, 2004, 25, 201-209.	2.9	369
57	Th2 cells are less susceptible than Th1 cells to the suppressive activity of CD25+ regulatory thymocytes because of their responsiveness to different cytokines. Blood, 2004, 103, 3117-3121.	0.6	158
58	An Alternatively Spliced Variant of CXCR3 Mediates the Inhibition of Endothelial Cell Growth Induced by IP-10, Mig, and I-TAC, and Acts as Functional Receptor for Platelet Factor 4. Journal of Experimental Medicine, 2003, 197, 1537-1549.	4.2	655
59	Expression of IP-10/CXCL10 and MIG/CXCL9 in the Thyroid and Increased Levels of IP-10/CXCL10 in the Serum of Patients with Recent-Onset Graves' Disease. American Journal of Pathology, 2002, 161, 195-206.	1.9	151
60	IP-10 and Mig Production by Glomerular Cells in Human Proliferative Glomerulonephritis and Regulation by Nitric Oxide. Journal of the American Society of Nephrology: JASN, 2002, 13, 53-64.	3.0	91
61	Interferon-inducible protein 10, monokine induced by interferon gamma, and interferon-inducible T-cell alpha chemoattractant are produced by thymic epithelial cells and attract T-cell receptor (TCR) αβ+CD8+ single-positive T cells, TCRγδ+ T cells, and natural killer–type cells in human thymus. Blood, 2001, 97. 601-607.	0.6	111
62	Signal Transduction by the Chemokine Receptor CXCR3. Journal of Biological Chemistry, 2001, 276, 9945-9954.	1.6	272
63	Cell cycle–dependent expression of CXC chemokine receptor 3 by endothelial cells mediates angiostatic activity. Journal of Clinical Investigation, 2001, 107, 53-63.	3.9	340
64	Inducible nitric oxide synthase expression in vascular and glomerular structures of human chronic allograft nephropathy., 1999, 187, 345-350.		24
65	Role for Interactions Between IP-10/Mig and CXCR3 in Proliferative Glomerulonephritis. Journal of the American Society of Nephrology: JASN, 1999, 10, 2518-2526.	3.0	103
66	Angiotensin II Stimulates the Synthesis and Secretion of Vascular Permeability Factor/Vascular Endothelial Growth Factor in Human Mesangial Cells. Journal of the American Society of Nephrology: JASN, 1999, 10, 245-255.	3.0	131
67	High CD30 Ligand Expression by Epithelial Cells and Hassal's Corpuscles in the Medulla of Human Thymus. Blood, 1998, 91, 3323-3332.	0.6	72
68	Catecholamines modulate growth and differentiation of human preosteoclastic cells. Osteoporosis International, 1996, 6, 14-21.	1.3	22
69	Functional and structural interactions between osteoblastic and preosteoclastic cells in vitro. Cell and Tissue Research, 1995, 281, 33-42.	1.5	22
70	Functional and structural interactions between osteoblastic and preosteoclastic cells in vitro. , $1995, 281, 33.$		1
71	Comparison of immuno- and HPLC-assays for the measurement of urinary collagen cross-links. Journal of Endocrinological Investigation, 1994, 17, 625-629.	1.8	12
72	Protective effect of gangliosides on myocardial hypoxic damage in the rat. European Journal of Pharmacology, 1991, 198, 43-49.	1.7	2

#	Article	IF	CITATIONS
73	Reply: Nephrons are generated via a series of committed progenitors. Nature Reviews Nephrology, 0, , .	4.1	O