List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7433782/publications.pdf Version: 2024-02-01

		22099	30848
274	12,827	59	102
papers	citations	h-index	g-index
313	313	313	7038
all docs	docs citations	times ranked	citing authors

#	Article	IF	CITATIONS
1	Quantitative phase imaging in biomedicine. Nature Photonics, 2018, 12, 578-589.	15.6	1,028
2	Refractive index maps and membrane dynamics of human red blood cells parasitized by <i>Plasmodium falciparum</i> . Proceedings of the National Academy of Sciences of the United States of America, 2008, 105, 13730-13735.	3.3	619
3	Quantitative Phase Imaging Techniques for the Study of Cell Pathophysiology: From Principles to Applications. Sensors, 2013, 13, 4170-4191.	2.1	436
4	Measurement of red blood cell mechanics during morphological changes. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 6731-6736.	3.3	381
5	Metabolic remodeling of the human red blood cell membrane. Proceedings of the National Academy of Sciences of the United States of America, 2010, 107, 1289-1294.	3.3	358
6	Diffraction phase and fluorescence microscopy. Optics Express, 2006, 14, 8263.	1.7	246
7	High-resolution three-dimensional imaging of red blood cells parasitized by Plasmodium falciparum and in situ hemozoin crystals using optical diffraction tomography. Journal of Biomedical Optics, 2013, 19, 1.	1.4	240
8	Comparative study of iterative reconstruction algorithms for missing cone problems in optical diffraction tomography. Optics Express, 2015, 23, 16933.	1.7	226
9	Imaging red blood cell dynamics by quantitative phase microscopy. Blood Cells, Molecules, and Diseases, 2008, 41, 10-16.	0.6	200
10	Recent advances in wavefront shaping techniques for biomedical applications. Current Applied Physics, 2015, 15, 632-641.	1.1	194
11	Real-time quantitative phase imaging with a spatial phase-shifting algorithm. Optics Letters, 2011, 36, 4677.	1.7	189
12	Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells. Optics Letters, 2009, 34, 3668.	1.7	185
13	Active illumination using a digital micromirror device for quantitative phase imaging. Optics Letters, 2015, 40, 5407.	1.7	168
14	Real-time visualization of 3-D dynamic microscopic objects using optical diffraction tomography. Optics Express, 2013, 21, 32269.	1.7	161
15	Subwavelength light focusing using random nanoparticles. Nature Photonics, 2013, 7, 454-458.	15.6	160
16	Antibacterial Activities of Graphene Oxide–Molybdenum Disulfide Nanocomposite Films. ACS Applied Materials & Interfaces, 2017, 9, 7908-7917.	4.0	150
17	Ultrahigh-definition dynamic 3D holographic display by active control of volume speckle fields. Nature Photonics, 2017, 11, 186-192.	15.6	148
18	Holographic deep learning for rapid optical screening of anthrax spores. Science Advances, 2017, 3, e1700606.	4.7	143

#	Article	IF	CITATIONS
19	Speckle-field digital holographic microscopy. Optics Express, 2009, 17, 12285.	1.7	137
20	Label-free characterization of white blood cells by measuring 3D refractive index maps. Biomedical Optics Express, 2015, 6, 3865.	1.5	133
21	Roadmap on digital holography [Invited]. Optics Express, 2021, 29, 35078.	1.7	133
22	Profiling individual human red blood cells using common-path diffraction optical tomography. Scientific Reports, 2014, 4, 6659.	1.6	127
23	Effective Temperature of Red-Blood-Cell Membrane Fluctuations. Physical Review Letters, 2011, 106, 238103.	2.9	125
24	Digital optical phase conjugation for delivering two-dimensional images through turbid media. Scientific Reports, 2013, 3, 1909.	1.6	125
25	Quantitative Phase Imaging and Artificial Intelligence: A Review. IEEE Journal of Selected Topics in Quantum Electronics, 2019, 25, 1-14.	1.9	123
26	Three-dimensional label-free imaging and quantification of lipid droplets in live hepatocytes. Scientific Reports, 2016, 6, 36815.	1.6	121
27	Measuring Large Optical Transmission Matrices of Disordered Media. Physical Review Letters, 2013, 111, 153902.	2.9	117
28	Time-multiplexed structured illumination using a DMD for optical diffraction tomography. Optics Letters, 2017, 42, 999.	1.7	116
29	Optical measurement of biomechanical properties of individual erythrocytes from a sickle cell patient. Acta Biomaterialia, 2012, 8, 4130-4138.	4.1	112
30	Measuring optical transmission matrices by wavefront shaping. Optics Express, 2015, 23, 10158.	1.7	112
31	Common-path diffraction optical tomography for investigation of three-dimensional structures and dynamics of biological cells. Optics Express, 2014, 22, 10398.	1.7	111
32	Identification of non-activated lymphocytes using three-dimensional refractive index tomography and machine learning. Scientific Reports, 2017, 7, 6654.	1.6	105
33	Quantitative phase imaging unit. Optics Letters, 2014, 39, 3630.	1.7	102
34	A Facile Route to Efficient, Low ost Flexible Organic Lightâ€Emitting Diodes: Utilizing the High Refractive Index and Builtâ€In Scattering Properties of Industrialâ€Grade PEN Substrates. Advanced Materials, 2015, 27, 1624-1631.	11.1	101
35	Complex wavefront shaping for optimal depth-selective focusing in optical coherence tomography. Optics Express, 2013, 21, 2890.	1.7	99
36	Dynamic spectroscopic phase microscopy for quantifying hemoglobin concentration and dynamic membrane fluctuation in red blood cells. Optics Express, 2012, 20, 9673.	1.7	97

#	Article	IF	CITATIONS
37	Polarization holographic microscopy for extracting spatio-temporally resolved Jones matrix. Optics Express, 2012, 20, 9948.	1.7	91
38	Ultrathin wide-angle large-area digital 3D holographic display using a non-periodic photon sieve. Nature Communications, 2019, 10, 1304.	5.8	89
39	Exploiting the speckle-correlation scattering matrix for a compact reference-free holographic image sensor. Nature Communications, 2016, 7, 13359.	5.8	88
40	Static and dynamic light scattering of healthy and malaria-parasite invaded red blood cells. Journal of Biomedical Optics, 2010, 15, 020506.	1.4	85
41	Biophysics of Malarial Parasite Exit from Infected Erythrocytes. PLoS ONE, 2011, 6, e20869.	1.1	84
42	Full-Field Subwavelength Imaging Using a Scattering Superlens. Physical Review Letters, 2014, 113, 113901.	2.9	81
43	Diffraction optical tomography using a quantitative phase imaging unit. Optics Letters, 2014, 39, 6935.	1.7	80
44	Intensity-based holographic imaging via space-domain Kramers–Kronig relations. Nature Photonics, 2021, 15, 354-360.	15.6	80
45	Dynamic active wave plate using random nanoparticles. Optics Express, 2012, 20, 17010.	1.7	79
46	Simultaneous 3D visualization and position tracking of optically trapped particles using optical diffraction tomography. Optica, 2015, 2, 343.	4.8	79
47	Characterizations of individual mouse red blood cells parasitized by Babesia microti using 3-D holographic microscopy. Scientific Reports, 2015, 5, 10827.	1.6	78
48	Refractive index tomograms and dynamic membrane fluctuations of red blood cells from patients with diabetes mellitus. Scientific Reports, 2017, 7, 1039.	1.6	77
49	Active spectral filtering through turbid media. Optics Letters, 2012, 37, 3261.	1.7	76
50	Kramers–Kronig holographic imaging for high-space-bandwidth product. Optica, 2019, 6, 45.	4.8	75
51	Measurement of the nonlinear elasticity of red blood cell membranes. Physical Review E, 2011, 83, 051925.	0.8	74
52	Measuring cell surface area and deformability of individual human red blood cells over blood storage using quantitative phase imaging. Scientific Reports, 2016, 6, 34257.	1.6	74
53	Optical imaging techniques for the study of malaria. Trends in Biotechnology, 2012, 30, 71-79.	4.9	72
54	Measurements of morphological and biophysical alterations in individual neuron cells associated with early neurotoxic effects in Parkinson's disease. Cytometry Part A: the Journal of the International Society for Analytical Cytology, 2017, 91, 510-518.	1.1	71

#	Article	IF	CITATIONS
55	Correlative three-dimensional fluorescence and refractive index tomography: bridging the gap between molecular specificity and quantitative bioimaging. Biomedical Optics Express, 2017, 8, 5688.	1.5	71
56	Random and V-groove texturing for efficient light trapping in organic photovoltaic cells. Solar Energy Materials and Solar Cells, 2013, 115, 36-41.	3.0	70
57	Optical diffraction tomography techniques for the study of cell pathophysiology. Journal of Biomedical Photonics and Engineering, 0, , 020201-1-020201-16.	0.4	69
58	Fresnel particle tracing in three dimensions using diffraction phase microscopy. Optics Letters, 2007, 32, 811.	1.7	68
59	Hyperspectral optical diffraction tomography. Optics Express, 2016, 24, 2006.	1.7	68
60	Label-free optical quantification of structural alterations in Alzheimer's disease. Scientific Reports, 2016, 6, 31034.	1.6	67
61	Label-free identification of individual bacteria using Fourier transform light scattering. Optics Express, 2015, 23, 15792.	1.7	66
62	Label-free non-invasive quantitative measurement of lipid contents in individual microalgal cells using refractive index tomography. Scientific Reports, 2018, 8, 6524.	1.6	66
63	Super-resolution three-dimensional fluorescence and optical diffraction tomography of live cells using structured illumination generated by a digital micromirror device. Scientific Reports, 2018, 8, 9183.	1.6	64
64	Label-Free Tomographic Imaging of Lipid Droplets in Foam Cells for Machine-Learning-Assisted Therapeutic Evaluation of Targeted Nanodrugs. ACS Nano, 2020, 14, 1856-1865.	7.3	64
65	Imaging voltage-dependent cell motions with heterodyne Mach-Zehnder phase microscopy. Optics Letters, 2007, 32, 1572.	1.7	63
66	Coherence properties of red blood cell membrane motions. Physical Review E, 2007, 76, 031902.	0.8	62
67	Pf155/RESA protein influences the dynamic microcirculatory behavior of ring-stage Plasmodium falciparum infected red blood cells. Scientific Reports, 2012, 2, 614.	1.6	61
68	Microrheology of red blood cell membranes using dynamic scattering microscopy. Optics Express, 2007, 15, 17001.	1.7	60
69	Perspective: Wavefront shaping techniques for controlling multiple light scattering in biological tissues: Toward <i>in vivo</i> applications. APL Photonics, 2018, 3, .	3.0	58
70	Learning-based screening of hematologic disorders using quantitative phase imaging of individual red blood cells. Biosensors and Bioelectronics, 2019, 123, 69-76.	5.3	58
71	White-light quantitative phase imaging unit. Optics Express, 2016, 24, 9308.	1.7	54
72	Label-Free Imaging of Membrane Potential Using Membrane Electromotility. Biophysical Journal, 2012, 103, 11-18.	0.2	53

#	Article	IF	CITATIONS
73	Cycle-consistent deep learning approach to coherent noise reduction in optical diffraction to compare to compa	1.7	53
74	Non-resonant power-efficient directional Nd:YAG ceramic laser using a scattering cavity. Nature Communications, 2021, 12, 8.	5.8	52
75	Generalized quantification of three-dimensional resolution in optical diffraction tomography using the projection of maximal spatial bandwidths. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2018, 35, 1891.	0.8	51
76	Simple super-resolution live-cell imaging based on diffusion-assisted Förster resonance energy transfer. Scientific Reports, 2013, 3, 1208.	1.6	50
77	High-Resolution 3-D Refractive Index Tomography and 2-D Synthetic Aperture Imaging of Live Phytoplankton. Journal of the Optical Society of Korea, 2014, 18, 691-697.	0.6	50
78	Spectro-refractometry of Individual Microscopic Objects Using Swept-Source Quantitative Phase Imaging. Analytical Chemistry, 2013, 85, 10519-10525.	3.2	49
79	Ultrahigh enhancement of light focusing through disordered media controlled by mega-pixel modes. Optics Express, 2017, 25, 8036.	1.7	49
80	Biomedical applications of holographic microspectroscopy [Invited]. Applied Optics, 2014, 53, G111.	0.9	48
81	Tomographic active optical trapping of arbitrarily shaped objects by exploiting 3D refractive index maps. Nature Communications, 2017, 8, 15340.	5.8	47
82	Label-free multiplexed microtomography of endogenous subcellular dynamics using generalizable deep learning. Nature Cell Biology, 2021, 23, 1329-1337.	4.6	47
83	Depth-enhanced 2-D optical coherence tomography using complex wavefront shaping. Optics Express, 2014, 22, 7514.	1.7	46
84	Optical diffraction tomography using a digital micromirror device for stable measurements of 4D refractive index tomography of cells. Proceedings of SPIE, 2016, , .	0.8	46
85	Synthetic Fourier transform light scattering. Optics Express, 2013, 21, 22453.	1.7	45
86	Angle-resolved light scattering of individual rod-shaped bacteria based on Fourier transform light scattering. Scientific Reports, 2014, 4, 5090.	1.6	45
87	Deep-learning-based three-dimensional label-free tracking and analysis of immunological synapses of CAR-T cells. ELife, 2020, 9, .	2.8	45
88	Light scattering of human red blood cells during metabolic remodeling of the membrane. Journal of Biomedical Optics, 2011, 16, 011013.	1.4	44
89	Anisotropic light scattering of individual sickle red blood cells. Journal of Biomedical Optics, 2012, 17, 040501.	1.4	43
90	The Effects of Ethanol on the Morphological and Biochemical Properties of Individual Human Red Blood Cells. PLoS ONE, 2015, 10, e0145327.	1.1	43

#	Article	IF	CITATIONS
91	Three-dimensional refractive index tomograms and deformability of individual human red blood cells from cord blood of newborn infants and maternal blood. Journal of Biomedical Optics, 2015, 20, 111208.	1.4	43
92	Effects of spatiotemporal coherence on interferometric microscopy. Optics Express, 2017, 25, 8085.	1.7	41
93	Improved phase sensitivity in spectral domain phase microscopy using line-field illumination and self phase-referencing. Optics Express, 2009, 17, 10681.	1.7	40
94	Superresolution imaging with optical fluctuation using speckle patterns illumination. Scientific Reports, 2015, 5, 16525.	1.6	40
95	Crosstalk Between PKA and Epac Regulates the Phenotypic Maturation and Function of Human Dendritic Cells. Journal of Immunology, 2010, 185, 3227-3238.	0.4	39
96	Optogenetic control of cell signaling pathway through scattering skull using wavefront shaping. Scientific Reports, 2015, 5, 13289.	1.6	39
97	Label-free high-resolution 3-D imaging of gold nanoparticles inside live cells using optical diffraction tomography. Methods, 2018, 136, 160-167.	1.9	38
98	Deep-Learning-Based Label-Free Segmentation of Cell Nuclei in Time-Lapse Refractive Index Tomograms. IEEE Access, 2019, 7, 83449-83460.	2.6	38
99	Melittin-induced alterations in morphology and deformability of human red blood cells using quantitative phase imaging techniques. Scientific Reports, 2017, 7, 9306.	1.6	37
100	Three-dimensional label-free observation of individual bacteria upon antibiotic treatment using optical diffraction tomography. Biomedical Optics Express, 2020, 11, 1257.	1.5	37
101	Roadmap on Digital Holography-Based Quantitative Phase Imaging. Journal of Imaging, 2021, 7, 252.	1.7	37
102	Cellular normoxic biophysical markers of hydroxyurea treatment in sickle cell disease. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113, 9527-9532.	3.3	36
103	Measurements of three-dimensional refractive index tomography and membrane deformability of live erythrocytes from Pelophylax nigromaculatus. Scientific Reports, 2018, 8, 9192.	1.6	36
104	LCD panel characterization by measuring full Jones matrix of individual pixels using polarization-sensitive digital holographic microscopy. Optics Express, 2014, 22, 24304.	1.7	35
105	One-Wave Optical Phase Conjugation Mirror by Actively Coupling Arbitrary Light Fields into a Single-Mode Reflector. Physical Review Letters, 2015, 115, 153902.	2.9	35
106	Fourier transform light scattering angular spectroscopy using digital inline holography. Optics Letters, 2012, 37, 4161.	1.7	34
107	Holographic intravital microscopy for 2-D and 3-D imaging intact circulating blood cells in microcapillaries of live mice. Scientific Reports, 2016, 6, 33084.	1.6	32
108	Multiscale label-free volumetric holographic histopathology of thick-tissue slides with subcellular resolution. Advanced Photonics, 2021, 3, .	6.2	31

#	Article	IF	CITATIONS
109	Optical characterization of red blood cells from individuals with sickle cell trait and disease in Tanzania using quantitative phase imaging. Scientific Reports, 2016, 6, 31698.	1.6	30
110	Measurement Techniques for Red Blood Cell Deformability: Recent Advances. , 2012, , .		29
111	Focusing through turbid media by polarization modulation. Optics Letters, 2015, 40, 1667.	1.7	29
112	Inverse problem solver for multiple light scattering using modified Born series. Optica, 2022, 9, 177.	4.8	29
113	Tomographic measurement of dielectric tensors at optical frequency. Nature Materials, 2022, 21, 317-324.	13.3	29
114	Large-scale optical diffraction tomography for inspection of optical plastic lenses. Optics Letters, 2016, 41, 934.	1.7	28
115	Holographic imaging through a scattering layer using speckle interferometry. Journal of the Optical Society of America A: Optics and Image Science, and Vision, 2017, 34, 1392.	0.8	28
116	Isotropically resolved label-free tomographic imaging based on tomographic moulds for optical trapping. Light: Science and Applications, 2021, 10, 102.	7.7	28
117	T cells sense biophysical cues using lamellipodia and filopodia to optimize intraluminal path finding. Integrative Biology (United Kingdom), 2014, 6, 450.	0.6	27
118	Three-dimensional label-free imaging and analysis of Pinus pollen grains using optical diffraction tomography. Scientific Reports, 2018, 8, 1782.	1.6	27
119	Optimizing illumination in three-dimensional deconvolution microscopy for accurate refractive index tomography. Optics Express, 2021, 29, 6293.	1.7	27
120	Label-Free White Blood Cell Classification Using Refractive Index Tomography and Deep Learning. BME Frontiers, 2021, 2021, .	2.2	27
121	Reference-free polarization-sensitive quantitative phase imaging using single-point optical phase conjugation. Optics Express, 2018, 26, 26858.	1.7	27
122	Roadmap on chaos-inspired imaging technologies (Cl2-Tech). Applied Physics B: Lasers and Optics, 2022, 128, 1.	1.1	27
123	A Bacteriaâ€Based Remotely Tunable Photonic Device. Advanced Optical Materials, 2017, 5, 1600617.	3.6	26
124	Rapid species identification of pathogenic bacteria from a minute quantity exploiting three-dimensional quantitative phase imaging and artificial neural network. Light: Science and Applications, 2022, 11, .	7.7	26
125	Ultraviolet refractometry using field-based light scattering spectroscopy. Optics Express, 2009, 17, 18878.	1.7	25
126	Beyond Born-Rytov limit for super-resolution optical diffraction tomography. Optics Express, 2017, 25, 30445.	1.7	25

#	Article	IF	CITATIONS
127	Compensation of aberration in quantitative phase imaging using lateral shifting and spiral phase integration. Optics Express, 2017, 25, 30771.	1.7	25
128	Disordered Optics: Exploiting Multiple Light Scattering and Wavefront Shaping for Nonconventional Optical Elements. Advanced Materials, 2020, 32, e1903457.	11.1	25
129	Fourier-transform light scattering of individual colloidal clusters. Optics Letters, 2012, 37, 2577.	1.7	24
130	Reference-Free Single-Point Holographic Imaging and Realization of an Optical Bidirectional Transducer. Physical Review Applied, 2018, 9, .	1.5	24
131	Holotomography: Refractive Index as an Intrinsic Imaging Contrast for 3-D Label-Free Live Cell Imaging. Advances in Experimental Medicine and Biology, 2021, 1310, 211-238.	0.8	23
132	Spectro-angular light scattering measurements of individual microscopic objects. Optics Express, 2014, 22, 4108.	1.7	21
133	Measuring large optical reflection matrices of turbid media. Optics Communications, 2015, 352, 33-38.	1.0	21
134	<i>In vivo</i> deep tissue imaging using wavefront shaping optical coherence tomography. Journal of Biomedical Optics, 2016, 21, 101406.	1.4	21
135	Mitotic Chromosomes in Live Cells Characterized Using High-Speed and Label-Free Optical Diffraction Tomography. Cells, 2019, 8, 1368.	1.8	20
136	Imaging through scattering media using digital holography. Optics Communications, 2019, 439, 218-223.	1.0	19
137	High-Resolution Holographic Microscopy Exploiting Speckle-Correlation Scattering Matrix. Physical Review Applied, 2018, 10, .	1.5	18
138	Single-shot wide-field topography measurement using spectrally multiplexed reflection intensity holography via space-domain Kramers–Kronig relations. Optics Letters, 2022, 47, 1025.	1.7	18
139	Combining Three-Dimensional Quantitative Phase Imaging and Fluorescence Microscopy for the Study of Cell Pathophysiology. Yale Journal of Biology and Medicine, 2018, 91, 267-277.	0.2	17
140	DeepRegularizer: Rapid Resolution Enhancement of Tomographic Imaging Using Deep Learning. IEEE Transactions on Medical Imaging, 2021, 40, 1508-1518.	5.4	16
141	Three-dimensional label-free visualization and quantification of polyhydroxyalkanoates in individual bacterial cell in its native state. Proceedings of the National Academy of Sciences of the United States of America, 2021, 118, .	3.3	16
142	Low-coherence optical diffraction tomography using a ferroelectric liquid crystal spatial light modulator. Optics Express, 2020, 28, 39649.	1.7	16
143	Scattering Optical Elements: Stand-Alone Optical Elements Exploiting Multiple Light Scattering. ACS Nano, 2016, 10, 6871-6876.	7.3	15
144	Deep learning-based optical field screening for robust optical diffraction tomography. Scientific Reports, 2019, 9, 15239.	1.6	15

#	Article	IF	CITATIONS
145	Label-free three-dimensional observations and quantitative characterisation of on-chip vasculogenesis using optical diffraction tomography. Lab on A Chip, 2021, 21, 494-501.	3.1	15
146	Calibration-free quantitative phase imaging using data-driven aberration modeling. Optics Express, 2020, 28, 34835.	1.7	15
147	Reconstructions of refractive index tomograms via a discrete algebraic reconstruction technique. Optics Express, 2017, 25, 27415.	1.7	14
148	Missing Cone Artifact Removal in ODT Using Unsupervised Deep Learning in the Projection Domain. IEEE Transactions on Computational Imaging, 2021, 7, 747-758.	2.6	14
149	Single-molecule functional anatomy of endogenous HER2-HER3 heterodimers. ELife, 2020, 9, .	2.8	14
150	Remote sensing of pressure inside deformable microchannels using light scattering in Scotch tape. Optics Letters, 2016, 41, 1837.	1.7	13
151	Significantly different expression levels of microRNAs associated with vascular invasion in hepatocellular carcinoma and their prognostic significance after surgical resection. PLoS ONE, 2019, 14, e0216847.	1.1	13
152	Effects of osmolality and solutes on the morphology of red blood cells according to three-dimensional refractive index tomography. PLoS ONE, 2021, 16, e0262106.	1.1	13
153	Element stacking method for topology optimization with material-dependent boundary and loading conditions. Journal of Mechanics of Materials and Structures, 2007, 2, 883-895.	0.4	12
154	Optical Measurements of Three-Dimensional Microscopic Temperature Distributions Around Gold Nanorods Excited by Localized Surface Plasmon Resonance. Physical Review Applied, 2019, 11, .	1.5	12
155	Lowâ€coherent optical diffraction tomography by angleâ€scanning illumination. Journal of Biophotonics, 2019, 12, e201800289.	1.1	12
156	Measurements of morphology and refractive indexes on human downy hairs using three-dimensional quantitative phase imaging. Journal of Biomedical Optics, 2015, 20, 111207.	1.4	11
157	Universal sensitivity of speckle intensity correlations to wavefront change in light diffusers. Scientific Reports, 2017, 7, 44435.	1.6	11
158	Computational approach to dark-field optical diffraction tomography. APL Photonics, 2020, 5, 040804.	3.0	11
159	Interactions of Nanoparticles with Macrophages and Feasibility of Drug Delivery for Asthma. International Journal of Molecular Sciences, 2022, 23, 1622.	1.8	11
160	Measurements of complex refractive index change of photoactive yellow protein over a wide wavelength range using hyperspectral quantitative phase imaging. Scientific Reports, 2018, 8, 3064.	1.6	10
161	Measurements of polarization-dependent angle-resolved light scattering from individual microscopic samples using Fourier transform light scattering. Optics Express, 2018, 26, 7701.	1.7	10
162	Speckle-Correlation Scattering Matrix Approaches for Imaging and Sensing through Turbidity. Sensors, 2020, 20, 3147.	2.1	10

#	Article	IF	CITATIONS
163	Study of Optical Configurations for Multiple Enhancement of Microalgal Biomass Production. Scientific Reports, 2019, 9, 1723.	1.6	9
164	Detection of intracellular monosodium urate crystals in gout synovial fluid using optical diffraction tomography. Scientific Reports, 2021, 11, 10019.	1.6	9
165	Three-dimensional label-free imaging and quantification of migrating cells during wound healing. Biomedical Optics Express, 2020, 11, 6812.	1.5	9
166	Common-path diffraction optical tomography with a low-coherence illumination for reducing speckle noise. , 2015, , .		8
167	Collaborative effects of wavefront shaping and optical clearing agent in optical coherence tomography. Journal of Biomedical Optics, 2016, 21, 121510.	1.4	8
168	Generalized image deconvolution by exploiting the transmission matrix of an optical imaging system. Scientific Reports, 2017, 7, 8961.	1.6	8
169	Methods in quantitative phase imaging in life science. Methods, 2018, 136, 1-3.	1.9	8
170	Label-Free Identification of Lymphocyte Subtypes Using Three-Dimensional Quantitative Phase Imaging and Machine Learning. Journal of Visualized Experiments, 2018, , .	0.2	8
171	Interpreting Intensity Speckle as the Coherency Matrix of Classical Light. Physical Review Applied, 2019, 12, .	1.5	8
172	Labelâ€Free Quantitative Analysis of Coacervates via 3D Phase Imaging. Advanced Optical Materials, 2021, 9, 2100697.	3.6	8
173	Optical Sensing of Red Blood Cell Dynamics. , 2011, , 279-309.		7
174	Time-reversing a monochromatic subwavelength optical focus by optical phase conjugation of multiply-scattered light. Scientific Reports, 2017, 7, 41384.	1.6	7
175	Finite-difference time-domain analysis of increased penetration depth in optical coherence tomography by wavefront shaping. Biomedical Optics Express, 2018, 9, 3883.	1.5	7
176	Reconstructed Three-Dimensional Images and Parameters of Individual Erythrocytes Using Optical Diffraction Tomography Microscopy. Annals of Laboratory Medicine, 2019, 39, 223-226.	1.2	7
177	<scp>3D</scp> morphological and biophysical changes in a single tachyzoite and its infected cells using threeâ€dimensional quantitative phase imaging. Journal of Biophotonics, 2020, 13, e202000055.	1.1	7
178	Wide-Field Super-Resolution Optical Fluctuation Imaging through Dynamic Near-Field Speckle Illumination. Nano Letters, 2022, 22, 2194-2201.	4.5	7
179	Single‣hot Referenceâ€Free Holographic Imaging using a Liquid Crystal Geometric Phase Diffuser. Laser and Photonics Reviews, 2022, 16,	4.4	7
180	Correlation of dynamic membrane fluctuations in red blood cells with diabetes mellitus and cardiovascular risks. Scientific Reports, 2021, 11, 7007.	1.6	6

#	Article	IF	CITATIONS
181	Enhancing sensitivity in absorption spectroscopy using a scattering cavity. Scientific Reports, 2021, 11, 14916.	1.6	6
182	Visualization and label-free quantification of microfluidic mixing using quantitative phase imaging. Applied Optics, 2017, 56, 6341.	0.9	5
183	[Invited Paper] Review: 3D Holographic Imaging and Display Exploiting Complex Optics. ITE Transactions on Media Technology and Applications, 2017, 5, 78-87.	0.3	5
184	Editorial: Quantitative Phase Imaging and Its Applications to Biophysics, Biology, and Medicine. Frontiers in Physics, 2020, 7, .	1.0	5
185	Scaling down quantitative phase imaging. Nature Photonics, 2020, 14, 67-68.	15.6	5
186	Label-free monitoring of 3D cortical neuronal growth in vitro using optical diffraction tomography. Biomedical Optics Express, 2021, 12, 6928.	1.5	5
187	Quantitative phase and refractive index imaging of 3D objects via optical transfer function reshaping. Optics Express, 2022, 30, 13802.	1.7	5
188	Speckle-field digital holographic microscopy. Proceedings of SPIE, 2010, , .	0.8	4
189	Automated Identification of Bacteria using Three-Dimensional Holographic Imaging and Convolutional Neural Network. , 2018, , .		4
190	Unique Red Blood Cell Morphology Detected in a Patient with Myelodysplastic Syndrome by Three-dimensional Refractive Index Tomography. Laboratory Medicine Online, 2019, 9, 185.	0.0	4
191	Chemotherapy confers a conserved secondary tolerance to EGFR inhibition via AXL-mediated signaling bypass. Scientific Reports, 2021, 11, 8016.	1.6	4
192	Pupil-aberration calibration with controlled illumination for quantitative phase imaging. Optics Express, 2021, 29, 22127.	1.7	4
193	Energy leakage in partially measured scattering matrices of disordered media. Physical Review B, 2016, 93, .	1.1	3
194	Scattering superlens. SPIE Newsroom, 0, , .	0.1	3
195	Spectroscopic phase microscopy for quantifying hemoglobin concentrations in intact red blood cells. , 2010, , .		2
196	Experimental observations of spectral changes produced by individual microscopic spheres. Optics Letters, 2015, 40, 1093.	1.7	2
197	Enhancement of optical resolution in three-dimensional refractive-index tomograms of biological samples by employing micromirror-embedded coverslips. Lab on A Chip, 2018, 18, 3484-3491.	3.1	2
198	Three-Dimensional Shapes and Cell Deformability of Rat Red Blood Cells during and after Asphyxial Cardiac Arrest. Emergency Medicine International, 2019, 2019, 1-10.	0.3	2

#	Article	IF	CITATIONS
199	Reagent- and actuator-free analysis of individual erythrocytes using three-dimensional quantitative phase imaging and capillary microfluidics. Sensors and Actuators B: Chemical, 2021, 348, 130689.	4.0	2
200	Optical diffraction tomography for simultaneous 3D visualization and tracking of optically trapped particles. , 2015, , .		2
201	Quantitative phase imaging of fluid mixing in microfluid chips. , 2016, , .		2
202	Metabolic remodeling of the human red blood cell membrane measured by quantitative phase microscopy. , 2011, , .		1
203	Quantification of neurotoxic effects on individual neuron cells using optical diffraction tomography (Conference Presentation). , 2016, , .		1
204	Editorial: Introduction to the special issue on high-resolution optical focusing and imaging within or through thick scattering media. Journal of Innovative Optical Health Sciences, 2019, 12, 1902002.	0.5	1
205	Quantitative live cell imaging with tomographic phase microscopy. , 2009, , .		1
206	Label-free quantitative imaging of lipid droplets using quantitative phase imaging techniques. , 2014, , .		1
207	Quantitative characterization of neurotoxicity effects on individual neuron cells using optical diffraction tomography. , 2015, , .		1
208	Hybrid application of complex wavefront shaping optical coherence tomography and optical clearing agents for the penetration depth enhancement. , 2015, , .		1
209	Intensity-based quantitative phase imaging via space- domain Kramers-Kronig relations. , 2021, , .		1
210	Optical Measurement of Biomechanical Properties of Human Red Blood Cell using Digital Holographic Microscopy: Malaria and Sickle Cell Diseases. Biophysical Journal, 2013, 104, 341a.	0.2	0
211	Digital Holographic Microscopy for the study of hematology: red blood cell, malaria, and sickle cell diseases. , 2013, , .		Ο
212	Scattering super-lens: subwavelength light focusing and imaging via wavefront shaping in complex media. , 2014, , .		0
213	Biophysical Study of Babesia Infected Red Blood Cell using Diffraction Phase Microscopy. Biophysical Journal, 2014, 106, 705a.	0.2	Ο
214	Single-Bacterial Profiling and Identification Based on Quantitative Phase Imaging. Biophysical Journal, 2014, 106, 604a.	0.2	0
215	Characterizations of individual human red blood cells from patients with diabetes mellitus. , 2015, , .		0
216	Laser Holographic Approaches for Rapid Bacterial Species Identification. Journal of Microbial & Biochemical Technology, 2015, 07, .	0.2	0

#	Article	IF	CITATIONS
217	Label-free analysis and identification of white blood cell population using optical diffraction tomography. , 2015, , .		0
218	Quantitative phase imaging techniques for the study of pathophysiology of cells and tissues. , 2015, , .		0
219	Identification of amyloid plaques in mouse brain tissue slides using quantitative phase imaging. , 2015, ,		Ο
220	Scattering superlens: Near-field focusing and imaging exploiting multiple scattering in turbid media. , 2015, , .		0
221	Regeneration of Monochromatic Subwavelength Optical Focus by Phase Conjugation of Multiply Scattered Light. , 2016, , .		0
222	Characterizations of individual human red blood cells from patients with diabetes mellitus (Conference Presentation). , 2016, , .		0
223	Label-free identification of white blood cell using optical diffraction tomography (Conference) Tj ETQq1 1 0.784	314 rgBT	Overlock 10
224	Super Resolution Microscopy with Induced Optical Fluctuation. Biophysical Journal, 2016, 110, 175a.	0.2	0
225	Study of erythrocyte membrane fluctuation using light scattering analysis. , 2016, , .		Ο
226	Refractive Index Tomograms and Dynamic Membrane Fluctuations of Red Blood Cells from Patients with Diabetes Mellitus. Biophysical Journal, 2017, 112, 218a-219a.	0.2	0
227	Digital 3D holographic display using scattering layers for enhanced viewing angle and image size. , 2017, , .		0
228	Multimodal approach combining optical diffraction tomography and three-dimensional structured illumination microscopy using a digital micromirror device. , 2017, , .		0
229	Optical field imaging with a single photodiode exploiting optical phase conjugation. , 2017, , .		Ο
230	A compact reference-free holographic image sensor. , 2017, , .		0
231	High-resolution Refractive Index Tomography Using Discrete Algebraic Reconstruction Technique. , 2017, , .		0
232	Three-Dimensional Label-Free Characterization of Frog Erythrocytes using Optical Diffraction Tomography. , 2018, , .		0
233	Holographic Display with an Enhanced Viewing Angle by using a Non-Periodic Photon Sieve. , 2018, , .		0
234	Fluid–Matrix Interface Triggers a Heterogeneous Activation of Macrophages. ACS Applied Bio Materials, 2020, 3, 4294-4301.	2.3	0

#	Article	IF	CITATIONS
235	Active Control of Spectral and Polarization Properties of Light through Turbid Media. , 2012, , .		0
236	Quantitative phase imaging and spectroscopy techniques for the study of sickle cell diseases. , 2012, , .		0
237	Quantitative phase imaging and spectroscopy techniques for the study of sickle cell diseases. , 2012, , .		0
238	Spectroscopic angle-resolved light scattering of individual micro-sized objects. , 2013, , .		0
239	Synthetic Fourier Transform Light Scattering. , 2013, , .		0
240	Digital optical phase conjugation for delivering two-dimensional images through turbid media. , 2013, ,		0
241	Quantitative Phase Imaging Using Swept Source. , 2013, , .		0
242	Subwavelength Light Control via Wavefront Shaping in Complex Media. , 2013, , .		0
243	3-D quantitative tracking of phagosomes using quantitative phase microscopy. , 2014, , .		0
244	Wavefront-shaping optical coherence tomography for enhancing penetration depth. , 2014, , .		0
245	Real-time Optical Diffraction Tomography for 3-D Visualization of Microscopic Particles. , 2014, , .		0
246	Complex wavefront control for enhancing penetration depth in 2-D optical coherence tomography. , 2014, , .		0
247	Optical Holographic Identification of Bacterial Species at the Single-bacterium Level. , 2014, , .		0
248	3-D Imaging of Malaria-infected Human Red Blood Cells Using Optical Diffraction Tomography. , 2014, , .		0
249	Scattering super-lens: subwavelength light focusing and imaging via wavefront shaping in complex media. , 2014, , .		0
250	Remote sensing of pressure inside microfluidic channels using light scattering in Scotch tape. , 2015, ,		0
251	In vivo mouse tissue imaging by depth-enhanced optical coherence tomography using complex wavefront shaping. , 2015, , .		0
252	Optogenetic regulation of cellular functions through an intact skull using wavefront shaping. , 2015, , .		0

#	Article	IF	CITATIONS
253	Intravital quantitative phase microscopy for studying blood flow in live mouse mesentery. , 2015, , .		0
254	Measuring three-dimensional refractive index maps of injection-molded plastic lenses using optical diffraction tomography. , 2015, , .		0
255	Imaging Microfluidic Mixing Using Quantitative Phase Imaging Techniques. , 2016, , .		0
256	3-D quantitative measurements of individual human red blood cells from diabetic patients employing 3-D quantitative phase imaging. , 2016, , .		0
257	The Applications of Inverse Scattering Principles with Digital Holography. , 2016, , .		0
258	Scattering Optical Elements: Exploiting Multiple Light Scattering. , 2016, , .		0
259	Optical measurements of stored human red blood cells with and without CPDA-1. , 2016, , .		0
260	Label-free and Rapid Quantification of the Lipid Contents in Individual Microalgae Using Optical Diffraction Tomography. , 2017, , .		0
261	White Light Quantitative Phase Imaging Unit. , 2017, , .		0
262	Label-free Structural Characterizations of Pinus Pollen Grains Using Optical Diffraction Tomography. , 2017, , .		0
263	Characterizations of Erythrocytes from Individuals with Sickle Cell Diseases and Malaria Infection in Tanzania Using a Portable Quantitative Phase Imaging Unit. , 2017, , .		0
264	Measuring Structural, Chemical, and Biomechanical Properties of Live Amphibian Erythrocytes Using Optical Diffraction Tomography. , 2017, , .		0
265	Ultra-thin Lens-less Holographic Microscopy Using a Scattering Layer. , 2017, , .		0
266	Label-free, Optical Measurements of Brain Morphologies in Alzheimer's Disease Using Quantitative Phase Imaging. , 2017, , .		0
267	Measurements of Polarization-dependent Angular Light Scattering from Individual Microscopic Samples Using Polarization Fourier Transform Light Scattering. , 2017, , .		0
268	Reconstructing binary refractive index tomograms with discrete algebraic reconstruction technique. , 2017, , .		0
269	Cellular biophysical markers of hydroxyurea treatment in sickle cell disease. , 2017, , .		0
270	Dynamic 3D holographic display with enhanced viewing angle by using a nonperiodic pinhole array. , 2018, , .		0

#	Article	IF	CITATIONS
271	Quantitative phase imaging and artificial intelligence: label-free 3D imaging, classification, and inference. , 2021, , .		0
272	Quantitative phase imaging and artificial intelligence: label-free 3D imaging, classification, and inference. , 2020, , .		0
273	Optical diffraction tomography with isotropic resolution based on tomographic mold for optical trapping. , 2021, , .		0
274	Volumetric label-free histopathology using optical diffraction tomography. , 2021, , .		0