
Cem Topkaya

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7433572/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Seismic performance evaluation of eccentrically braced frames with long links using FEMA P695 methodology. Engineering Structures, 2022, 258, 114104.	5.3	7
2	Stability of laterally unsupported shear links in eccentrically braced frames. Earthquake Engineering and Structural Dynamics, 2022, 51, 832-852.	4.4	3
3	Development of a loading protocol for long links in eccentrically braced frames. Journal of Constructional Steel Research, 2022, 193, 107278.	3.9	3
4	Stiffness requirements for wind girders in open-top cylindrical steel tanks. Thin-Walled Structures, 2022, 176, 109353.	5.3	3
5	Seismic performance of eccentrically braced frames designed to AISC341 and EC8 specifications. Structures, 2021, 29, 339-359.	3.6	8
6	Experimental and numerical analysis of cold-formed steel floor trusses with concrete filled compression chord. Engineering Structures, 2021, 234, 111813.	5.3	6
7	The plastic and the ultimate resistance of four-bolt extended end-plate connections. Journal of Constructional Steel Research, 2021, 181, 106614.	3.9	15
8	Mid-spliced end-plated replaceable links for eccentrically braced frames. Engineering Structures, 2021, 237, 112225.	5.3	22
9	Extended end-plate connections for replaceable shear links. Engineering Structures, 2021, 240, 112385.	5.3	25
10	Experimental Validation of Detachable Links for Eccentrically Braced Frames. Ce/Papers, 2021, 4, 1874-1880.	0.3	0
11	Stability of Openâ€Top Cylindrical Steel Tanks with Primary Stiffening Ring under Wind Loading. Ce/Papers, 2021, 4, 1781-1788.	0.3	Ο
12	Effects of cyclic strain hardening on performance of eccentrically braced frames. Journal of Constructional Steel Research, 2021, 187, 106948.	3.9	2
13	An energy dissipating hold down device for cold-formed steel structures. Journal of Constructional Steel Research, 2020, 166, 105913.	3.9	7
14	Nonsymmetrical loading protocols for shear links in eccentrically braced frames. Earthquake Engineering and Structural Dynamics, 2020, 49, 74-94.	4.4	12
15	Performance comparison of BRBFs designed using different response modification factors. Engineering Structures, 2020, 225, 111281.	5.3	10
16	Behavior of channel connectors in steel-concrete composite beams with precast slabs. Journal of Constructional Steel Research, 2020, 172, 106167.	3.9	7
17	The response of tall buildings to far-field earthquakes and the case of a 49-storey steel building. International Journal of Earthquake and Impact Engineering, 2020, 3, 15.	0.3	0
18	Stress resultants for wind girders in open-top cylindrical steel tanks. Engineering Structures, 2019, 196, 109347.	5.3	9

#	Article	IF	CITATIONS
19	Splice Connection Details for Eccentrically Braced Frame Replaceable Links. Ce/Papers, 2019, 3, 463-468.	0.3	0
20	Effect of Support Width on Stress Resultants in Ring Beams Interacting with Silo Shells. Ce/Papers, 2019, 3, 433-438.	0.3	0
21	Development of detachable replaceable links for eccentrically braced frames. Earthquake Engineering and Structural Dynamics, 2019, 48, 1134-1155.	4.4	32
22	Strength and stiffness of floor trusses fabricated from cold-formed steel lipped channels. Engineering Structures, 2019, 181, 437-457.	5.3	16
23	Analysis of silo supporting ring beams resting on discrete supports. Thin-Walled Structures, 2019, 135, 285-296.	5.3	4
24	Testing and analysis of different hold down devices for CFS construction. Journal of Constructional Steel Research, 2018, 145, 97-115.	3.9	8
25	Dynamic buckling of braces in concentrically braced frames. Earthquake Engineering and Structural Dynamics, 2018, 47, 613-633.	4.4	11
26	Evaluation of seismic response factors for BRBFs using FEMA P695 methodology. Journal of Constructional Steel Research, 2018, 151, 41-57.	3.9	20
27	Replaceable links with gusseted brace joints for eccentrically braced frames. Soil Dynamics and Earthquake Engineering, 2018, 115, 305-318.	3.8	31
28	Application of ring beam stiffness criterion for discretely supported shells under global shear and bending. Advances in Structural Engineering, 2018, 21, 2404-2415.	2.4	1
29	Low-Cycle Fatigue Testing of Shear Links and Calibration of a Damage Law. Journal of Structural Engineering, 2018, 144, .	3.4	17
30	Requirements for intermediate ring stiffeners placed below the ideal location on discretely supported shells. Thin-Walled Structures, 2017, 115, 21-33.	5.3	4
31	Replaceable links with direct brace attachments for eccentrically braced frames. Earthquake Engineering and Structural Dynamics, 2017, 46, 2121-2139.	4.4	28
32	Seismic behavior of concentrically braced frames designed to AISC341 and EC8 provisions. Journal of Constructional Steel Research, 2017, 133, 383-404.	3.9	33
33	04.12: Analysis of silo supporting ring beams: Resting on discrete supports. Ce/Papers, 2017, 1, 918-927.	0.3	0
34	11.48: An experimental study on welded overlap core: Steel encased bucklingâ€restrained braces. Ce/Papers, 2017, 1, 3219-3228.	0.3	0
35	A review of research on steel eccentrically braced frames. Journal of Constructional Steel Research, 2017, 128, 53-73.	3.9	124
36	Development of welded overlap core steel encased buckling-restrained braces. Journal of Constructional Steel Research, 2016, 127, 151-164.	3.9	18

#	Article	IF	CITATIONS
37	Evaluation of Seismic Response Factors for Eccentrically Braced Frames Using FEMA P695 Methodology. Earthquake Spectra, 2016, 32, 303-321.	3.1	18
38	Panel zone deformation demands in steel moment resisting frames. Journal of Constructional Steel Research, 2015, 110, 65-75.	3.9	13
39	Buckling of cylindrical metal shells on discretely supported ring beams. Thin-Walled Structures, 2015, 93, 22-35.	5.3	8
40	Strength and stiffness requirements for intermediate ring stiffeners on discretely supported cylindrical shells. Thin-Walled Structures, 2015, 96, 64-74.	5.3	7
41	Displacement amplification factors for steel eccentrically braced frames. Earthquake Engineering and Structural Dynamics, 2015, 44, 167-184.	4.4	23
42	Fundamental periods of steel eccentrically braced frames. Structural Design of Tall and Special Buildings, 2015, 24, 123-140.	1.9	6
43	Stability of beams in steel eccentrically braced frames. Journal of Constructional Steel Research, 2014, 96, 14-25.	3.9	9
44	Ideal Location of Intermediate Ring Stiffeners on Discretely Supported Cylindrical Shells. Journal of Engineering Mechanics - ASCE, 2014, 140, .	2.9	10
45	Behavior of steel–concrete partially composite beams with channel type shear connectors. Journal of Constructional Steel Research, 2014, 97, 69-78.	3.9	24
46	Fundamental periods of steel concentrically braced frames designed to Eurocode 8. Earthquake Engineering and Structural Dynamics, 2013, 42, 1415-1433.	4.4	11
47	Design overstrength of steel eccentrically braced frames. International Journal of Steel Structures, 2013, 13, 529-545.	1.3	19
48	An experimental study on channel type shear connectors. Journal of Constructional Steel Research, 2012, 74, 108-117.	3.9	55
49	A numerical study on special truss moment frames with Vierendeel openings. Journal of Constructional Steel Research, 2011, 67, 667-677.	3.9	8
50	A comparative study of AISC-360 and EC3 strength limit states. International Journal of Steel Structures, 2011, 11, 13-27.	1.3	14
51	A numerical study on local buckling and energy dissipation of CHS seismic bracing. Thin-Walled Structures, 2011, 49, 984-996.	5.3	4
52	Ring Beam Stiffness Criterion for Column-Supported Metal Silos. Journal of Engineering Mechanics - ASCE, 2011, 137, 846-853.	2.9	12
53	An experimental study on steelâ€encased bucklingâ€restrained brace hysteretic dampers. Earthquake Engineering and Structural Dynamics, 2010, 39, 561-581.	4.4	25
54	A numerical study on response factors for steel wall–frame systems. Earthquake Engineering and Structural Dynamics, 2010, 39, 1611-1630.	4.4	4

#	Article	IF	CITATIONS
55	A numerical study on response modification, overstrength, and displacement amplification factors for steel plate shear wall systems. Earthquake Engineering and Structural Dynamics, 2009, 38, 497-516.	4.4	22
56	Lateral stiffness of steel plate shear wall systems. Thin-Walled Structures, 2009, 47, 827-835.	5.3	17
57	Natural periods of steel plate shear wall systems. Journal of Constructional Steel Research, 2009, 65, 542-551.	3.9	26
58	Solver and Shell Element Performances for Curved Bridge Analysis. Journal of Bridge Engineering, 2008, 13, 418-424.	2.9	4
59	Block shear failure of gusset plates with welded connections. Engineering Structures, 2007, 29, 11-20.	5.3	34
60	Finite element modeling of block shear failure in coped steel beams. Journal of Constructional Steel Research, 2007, 63, 544-553.	3.9	16
61	A numerical study on linear bifurcation web buckling of steel I-beams in the sidesway mode. Engineering Structures, 2006, 28, 1028-1037.	5.3	7
62	Lateral buckling of overhanging crane trolley monorails. Engineering Structures, 2006, 28, 1162-1172.	5.3	8
63	Evaluation of Top Flange Bracing Systems for Curved Box Girders. Journal of Bridge Engineering, 2005, 10, 693-703.	2.9	5
64	Composite Shear Stud Strength at Early Concrete Ages. Journal of Structural Engineering, 2004, 130, 952-960.	3.4	40
65	Analysis of specimen size effects in inclined compression test on laminated elastomeric bearings. Engineering Structures, 2004, 26, 1071-1080.	5.3	7
66	A finite element parametric study on block shear failure of steel tension members. Journal of Constructional Steel Research, 2004, 60, 1615-1635.	3.9	51
67	Behavior of curved steel trapezoidal box-girders during construction. Engineering Structures, 2004, 26, 721-733.	5.3	30
68	Development of computational software for analysis of curved girders under construction loads. Computers and Structures, 2003, 81, 2087-2098.	4.4	8
69	Test Method for Determining the Shear Modulus of Elastomeric Bearings. Journal of Structural Engineering, 2002, 128, 797-805.	3.4	12