Ronald J Kendall

List of Publications by Citations

Source: https://exaly.com/author-pdf/7433249/ronald-j-kendall-publications-by-citations.pdf

Version: 2024-04-28

This document has been generated based on the publications and citations recorded by exaly.com. For the latest version of this publication list, visit the link given above.

The third column is the impact factor (IF) of the journal, and the fourth column is the number of citations of the article.

85
papers

1,937
citations

23
h-index
g-index

86
ext. papers

2,103
ext. citations

3.9
avg, IF

L-index

#	Paper	IF	Citations
85	Effects of atrazine on fish, amphibians, and aquatic reptiles: a critical review. <i>Critical Reviews in Toxicology</i> , 2008 , 38, 721-72	5.7	187
84	Assessment of pathogens and toxicants in New Orleans, LA following Hurricane Katrina. <i>Environmental Science & Environmental S</i>	10.3	131
83	Crude Oil Sorption by Raw Cotton. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 6277-628	13.9	119
82	An ecological risk assessment of lead shot exposure in non-waterfowl avian species: Upland game birds and raptors. <i>Environmental Toxicology and Chemistry</i> , 1996 , 15, 4-20	3.8	104
81	Effects of atrazine on metamorphosis, growth, laryngeal and gonadal development, aromatase activity, and sex steroid concentrations in Xenopus laevis. <i>Ecotoxicology and Environmental Safety</i> , 2005 , 62, 160-73	7	102
80	Preliminary assessment of perchlorate in ecological receptors at the Longhorn Army Ammunition Plant (LHAAP), Karnack, Texas. <i>Ecotoxicology</i> , 2001 , 10, 305-13	2.9	95
79	Plasma concentrations of estradiol and testosterone, gonadal aromatase activity and ultrastructure of the testis in Xenopus laevis exposed to estradiol or atrazine. <i>Aquatic Toxicology</i> , 2005 , 72, 383-96	5.1	73
78	Gonadal development of larval male Xenopus laevis exposed to atrazine in outdoor microcosms. <i>Environmental Science & Environmental Science & Environm</i>	10.3	62
77	Effects of atrazine on metamorphosis, growth, and gonadal development in the green frog (Rana clamitans). <i>Journal of Toxicology and Environmental Health - Part A: Current Issues</i> , 2004 , 67, 941-57	3.2	62
76	Novel Natural Sorbent for Oil Spill Cleanup. <i>Industrial & Engineering Chemistry Research</i> , 2014 , 53, 11954-11961	3.9	61
75	Effects of atrazine on CYP19 gene expression and aromatase activity in testes and on plasma sex steroid concentrations of male African clawed frogs (Xenopus laevis). <i>Toxicological Sciences</i> , 2005 , 86, 273-80	4.4	60
74	Plasma sex steroid concentrations and gonadal aromatase activities in African clawed frogs (Xenopus laevis) from South Africa. <i>Environmental Toxicology and Chemistry</i> , 2004 , 23, 1996-2007	3.8	58
73	Human and ecological risk assessment of a crop protection chemical: a case study with the azole fungicide epoxiconazole. <i>Critical Reviews in Toxicology</i> , 2014 , 44, 176-210	5.7	46
72	The thyroid endocrine disruptor perchlorate affects reproduction, growth, and survival of mosquitofish. <i>Ecotoxicology and Environmental Safety</i> , 2006 , 63, 343-52	7	46
71	A review of the effects of aircraft noise on wildlife and humans, current control mechanisms, and the need for further study. <i>Environmental Management</i> , 2003 , 32, 418-32	3.1	42
70	Evidence of an Oxyspirura petrowi epizootic in northern bobwhites (Colinus virginianus), Texas, USA. <i>Journal of Wildlife Diseases</i> , 2014 , 50, 552-8	1.3	40
69	Effects of chronic lead ingestion on reproductive characteristics of ringed turtle doves Streptopelia risoria and on tissue lead concentrations of adults and their progeny. <i>Environmental Pollution Series A, Ecological and Biological</i> , 1981 , 26, 203-213		39

68	The effect of methyl parathion on susceptibility of bobwhite quail (Colinus virginianus) to domestic cat predation. <i>Behavioral and Neural Biology</i> , 1985 , 43, 21-36		37
67	Lead concentrations in livers of Maryland waterfowl with and without ingested lead shot present in gizzards. <i>Bulletin of Environmental Contamination and Toxicology</i> , 1980 , 25, 855-60	2.7	35
66	Metal distributions in New Orleans following hurricanes Katrina and Rita: A continuation study. <i>Environmental Science & Environmental Science & Envir</i>	10.3	33
65	Toxicology of ingested lead shot in ringed turtle doves. <i>Archives of Environmental Contamination and Toxicology</i> , 1982 , 11, 259-63	3.2	24
64	Filtration Efficiency of Submicrometer Filters. <i>Industrial & Engineering Chemistry Research</i> , 2013 , 52, 16513-16518	3.9	23
63	Terrestrial wildlife exposed to agrochemicals: An ecological risk assessment perspective. <i>Environmental Toxicology and Chemistry</i> , 1992 , 11, 1727-1749	3.8	23
62	Functional PVDF/rGO/TiO2 nanofiber webs for the removal of oil from water. <i>Polymer</i> , 2020 , 186, 12202	28 9	22
61	Environmentally relevant concentrations of ammonium perchlorate inhibit development and metamorphosis in Xenopus laevis. <i>Environmental Toxicology and Chemistry</i> , 2002 , 21, 424-30	3.8	21
60	Atmospheric pressure plasma treatment and breathability of polypropylene nonwoven fabric. Journal of Industrial Textiles, 2013 , 42, 501-514	1.6	19
59	A survey of neonicotinoid use and potential exposure to northern bobwhite (Colinus virginianus) and scaled quail (Callipepla squamata) in the Rolling Plains of Texas and Oklahoma. <i>Environmental Toxicology and Chemistry</i> , 2016 , 35, 1511-5	3.8	19
58	EYEWORMS (OXYSPIRURA PETROWI) IN NORTHERN BOBWHITES (COLINUS VIRGINIANUS) FROM THE ROLLING PLAINS ECOREGION OF TEXAS AND OKLAHOMA, 2011-13. <i>Journal of Wildlife Diseases</i> , 2016 , 52, 562-7	1.3	18
57	Breathability of Standalone Poly(vinyl alcohol) Nanofiber Webs. <i>Industrial & Damp; Engineering Chemistry Research</i> , 2014 , 53, 6951-6958	3.9	17
56	Effects of chronic 2,4,6,-trinitrotoluene, 2,4-dinitrotoluene, and 2,6-dinitrotoluene exposure on developing bullfrog (Rana catesbeiana) tadpoles. <i>Ecotoxicology and Environmental Safety</i> , 2011 , 74, 924-	- 8	17
55	Reproductive toxicity of nitroaromatics to the cricket, Acheta domesticus. <i>Science of the Total Environment</i> , 2009 , 407, 5046-9	10.2	17
54	Spatial distribution of lead concentrations in urban surface soils of New Orleans, Louisiana USA. <i>Environmental Geochemistry and Health</i> , 2010 , 32, 379-89	4.7	16
53	Next-Generation Nonparticulate Dry Nonwoven Pad for Chemical Warfare Agent Decontamination. <i>Industrial & Decontamination amp; Engineering Chemistry Research</i> , 2008 , 47, 9889-9895	3.9	15
52	Molecular identification and characterization of partial COX1 gene from caecal worm () in Northern bobwhite () from the Rolling Plains Ecoregion of Texas. <i>International Journal for Parasitology:</i> Parasites and Wildlife, 2017, 6, 195-201	2.6	14
51	Caecal worm, , infection in the northern bobwhite quail,. <i>International Journal for Parasitology:</i> Parasites and Wildlife, 2017 , 6, 35-38	2.6	12

50	infection leads to pathological consequences in Northern bobwhite (). <i>International Journal for Parasitology: Parasites and Wildlife</i> , 2016 , 5, 273-276	2.6	12
49	Acute toxicity of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and 2,6-dinitrotoluene in the adult bullfrog (Lithobates catesbeiana). <i>Bulletin of Environmental Contamination and Toxicology</i> , 2008 , 80, 48	7- ² 97	12
48	Comparison of hydrophilic PVA/TiO2 and hydrophobic PVDF/TiO2 microfiber webs on the dye pollutant photo-catalyzation. <i>Journal of Environmental Chemical Engineering</i> , 2020 , 8, 103914	6.8	11
47	Uptake, elimination, and relative distribution of perchlorate in various tissues of channel catfish. <i>Environmental Science & Environmental Science & </i>	10.3	11
46	A Quantitative PCR Protocol for Detection of Oxyspirura petrowi in Northern Bobwhites (Colinus virginianus). <i>PLoS ONE</i> , 2016 , 11, e0166309	3.7	11
45	Lead poisoning in swans in Washington State. <i>Journal of Wildlife Diseases</i> , 1982 , 18, 385-7	1.3	9
44	Lead concentrations in pine voles from two Virginia orchards. <i>Environmental Pollution Series B: Chemical and Physical</i> , 1983 , 6, 157-160		9
43	Lead distributions and risks in New Orleans following Hurricanes Katrina and Rita. <i>Environmental Toxicology and Chemistry</i> , 2010 , 29, 1429-37	3.8	8
42	. Environmental Toxicology and Chemistry, 1988, 7, 343	3.8	8
41	Functional PVA/VB2/TiO Nanofiber Webs for Controlled Drug Delivery <i>ACS Applied Bio Materials</i> , 2019 , 2, 5916-5929	4.1	8
40	Elevated parasite burdens as a potential mechanism affecting northern bobwhite (Colinus virginianus) population dynamics in the Rolling Plains of West Texas. <i>Parasitology Research</i> , 2018 , 117, 1683-1688	2.4	7
39	The parasitic eyeworm Oxyspirura petrowi as a possible cause of decline in the threatened lesser prairie-chicken (Tympanuchus pallidicinctus). <i>PLoS ONE</i> , 2014 , 9, e108244	3.7	7
38	Farming with agrochemicals. The response of wildlife. <i>Environmental Science & Environmental Science &</i>	10.3	7
37	Histologic and ultrastructural lesions of mourning doves (Zenaida macroura) poisoned by lead shot. <i>Poultry Science</i> , 1983 , 62, 952-6	3.9	7
36	Organochlorine pesticides, lead, and mercury in northern bobwhite (Colinus virginianus) and scaled quail (Callipepla squamata) from the Rolling Plains ecoregion of Texas and Oklahoma. <i>Environmental Toxicology and Chemistry</i> , 2015 , 34, 1505-10	3.8	6
35	Evidence of Oxyspirura petrowi in migratory songbirds found in the rolling plains of West Texas, USA. <i>Journal of Wildlife Diseases</i> , 2014 , 50, 711-2	1.3	6
34	Response of larval frogs to Corexit 9500. <i>Toxicological and Environmental Chemistry</i> , 2012 , 94, 1199-121	0 1.4	6
33	Molecular identification of Physaloptera sp. from wild northern bobwhite (Colinus virginianus) in the Rolling Plains ecoregion of Texas. <i>Parasitology Research</i> , 2018 , 117, 2963-2969	2.4	6

32	Aflatoxin contamination in corn sold for wildlife feed in texas. <i>Ecotoxicology</i> , 2017 , 26, 516-520	2.9	5
31	Monitoring Northern Bobwhite (Colinus virginianus) Populations in the Rolling Plains of Texas: Parasitic Infection Implications. <i>Rangeland Ecology and Management</i> , 2019 , 72, 796-802	2.2	5
30	Development of a multiplex quantitative PCR assay for eyeworm (Oxyspirura petrowi) and caecal worm (Aulonocephalus pennula) detection in Northern bobwhite quail (Colinus virginianus) of the Rolling Plains Ecoregion, Texas. <i>Veterinary Parasitology</i> , 2018 , 253, 65-70	2.8	5
29	Phylogenetic analysis of eyeworm (Oxyspirura petrowi) in northern bobwhite (Colinus virginianus) based on the nuclear 18S rDNA and mitochondrial cytochrome oxidase 1 gene (COX1). <i>Parasitology Open</i> , 2018 , 4,	1.5	5
28	Population Responses of Peromyscus Resident in Iowa Cornfields Treated with the Organophosphorus Pesticide COUNTER . <i>Ecotoxicology</i> , 1999 , 8, 189-200	2.9	5
27	Wildlife toxicology. <i>Environmental Science & Technology</i> , 1982 , 16, 448A-453A	10.3	5
26	Life-cycle of Oxyspirura petrowi (Spirurida: Thelaziidae), an eyeworm of the northern bobwhite quail (Colinus virginianus). <i>Parasites and Vectors</i> , 2019 , 12, 555	4	5
25	Wildlife toxicology revisited. <i>Environmental Science & Technology</i> , 2003 , 37, 178A-183A	10.3	4
24	Diazinon dissipation from vegetation, occurrence in earthworms, and presence in avian gastrointestinal tracts collected from apple orchards following D-Z-N 50W application. <i>Environmental Toxicology and Chemistry</i> , 2000 , 19, 1360-1367	3.8	4
23	A Water Bottle Modified for Avians. <i>Poultry Science</i> , 1980 , 59, 177-178	3.9	4
22	Plains lubber grasshopper (Brachystola magna) as a potential intermediate host for Oxyspirura petrowi in northern bobwhites (Colinus virginianus). <i>Parasitology Open</i> , 2016 , 2,	1.5	4
21	Quantitative analysis of Northern bobwhite (Colinus virginianus) cytokines and TLR expression to eyeworm (Oxyspirura petrowi) and caecal worm (Aulonocephalus pennula) glycoproteins. <i>Parasitology Research</i> , 2019 , 118, 2909-2918	2.4	3
20	European starling nestling response to chlorpyrifos exposure in a corn agroecosystem. <i>Toxicological and Environmental Chemistry</i> , 2000 , 75, 215-234	1.4	3
19	Chronic lead ingestion and nephropathy in ringed turtle doves. <i>Poultry Science</i> , 1981 , 60, 2028-32	3.9	3
18	A model of the impact of methyl parathion spraying on a quail population. <i>Bulletin of Environmental Contamination and Toxicology</i> , 1980 , 25, 586-93	2.7	2
17	POTENTIAL SIGNIFICANCE OF FALL BREEDING OF THE MONARCH BUTTERFLY (DANAUS PLEXIPPUS) IN THE ROLLING PLAINS ECOREGION OF WEST TEXAS 2018 , 70,		2
16	"Weight of evidence" as a tool for evaluating disease in wildlife: An example assessing parasitic infection in Northern bobwhite (). <i>International Journal for Parasitology: Parasites and Wildlife</i> , 2020 , 13, 27-37	2.6	2
15	Predicting seasonal infection of eyeworm () and caecal worm () in northern bobwhite quail () of the Rolling Plains Ecoregion of Texas, USA. <i>International Journal for Parasitology: Parasites and Wildlife</i> , 2019 , 8, 50-55	2.6	2

14	Regional surveillance of parasitic infections in wild Northern Bobwhite Quail (Colinus virginianus) utilizing a mobile research laboratory platform. <i>Parasitology Open</i> , 2018 , 4,	1.5	2
13	Prevalence of monarch (Danaus plexippus) and queen (Danaus gilippus) butterflies in West Texas during the fall of 2018. <i>BMC Ecology</i> , 2020 , 20, 33	2.7	1
12	Tensile testing and fracture mechanism analysis of polyvinyl alcohol nanofibrous webs. <i>Journal of Applied Polymer Science</i> , 2020 , 137, 49213	2.9	1
11	Propagation of a Laboratory Ringed Turtle Dove Colony. <i>Poultry Science</i> , 1981 , 60, 2728-2730	3.9	1
10	The toxicology of ingested lead acetate in ringed turtle doves Streptopelia risoria. <i>Environmental Pollution Series A, Ecological and Biological</i> , 1982 , 27, 255-262		1
9	Molecular Identification of Oxyspirura Petrowi Intermediate Hosts by Nested PCR Using Internal Transcribed Spacer 1 (ITS1). <i>Journal of Parasitology</i> , 2020 , 106, 46	0.9	1
8	Avian and Emerging Human Oxyspirura Species Compared by Morphology, Pathogenicity, Intermediate Host, and Sequence Homology. <i>Journal of Parasitology</i> , 2020 , 106, 623-624	0.9	1
7	Molecular Identification of Intermediate Hosts by Nested PCR Using Internal Transcribed Spacer 1 (ITS1). <i>Journal of Parasitology</i> , 2020 , 106, 46-52	0.9	1
6	Identification of eyeworm () and caecal worm () infection levels in Northern bobwhite quail () of the Rolling Plains, TX using a mobile research laboratory: Implications for regional surveillance. <i>Biomolecular Detection and Quantification</i> , 2019 , 17, 100092	12	О
5	Toxicological studies with mirex in bobwhite quail. <i>Poultry Science</i> , 1978 , 57, 1539-45	3.9	O
4	GREATER ROADRUNNER (GEOCOCCYX CALIFORNIANUS) PREDATION ON JUVENILE QUAIL IN THE ROLLING PLAINS ECOREGION OF TEXAS. <i>Southwestern Naturalist</i> , 2018 , 63, 204	0.3	О
3	Molecular phylogenetic and in silico analysis of glyceraldeyde-3-phosphate dehydrogenase (GAPDH) gene from northern bobwhite quail (Colinus virginianus). <i>Molecular Biology Reports</i> , 2021 , 48, 1093-1101	2.8	
2	A Helminth Survey of Northern Bobwhite Quail (Colinus virginianus) and Passerines in the Rolling Plains Ecoregion of Texas. <i>Journal of Parasitology</i> , 2021 , 107, 132-137	0.9	
1	Evaluation of milkweed (Asclepias spp.) restoration in the Rolling Plains ecoregion of West Texas for the enhancement of monarch butterfly (Danaus plexippus) habitat. <i>Journal for Nature</i> Consequation 2021, 64, 126076	2.3	