
Manuel JoaquÃ-n Reigosa Roger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7433077/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Weed pressure determines the chemical profile of wheat (<scp><i>Triticum aestivum</i> L.</scp>) and its allelochemicals potential. Pest Management Science, 2022, 78, 1605-1619.	1.7	7
2	Ultrastructural and hormonal changes related to harmaline-induced treatment in Arabidopsis thaliana (L.) Heynh. root meristem. Plant Physiology and Biochemistry, 2022, 179, 78-89.	2.8	4
3	Ecophysiological Responses of Tall Wheatgrass Germplasm to Drought and Salinity. Plants, 2022, 11, 1548.	1.6	4
4	Morphoâ€physiological, biochemical and isotopic response of tall wheatgrass populations to salt stress. Journal of Agronomy and Crop Science, 2021, 207, 236-248.	1.7	3
5	Secondary Metabolites, Ferulic Acid and p-Hydroxybenzoic Acid Induced Toxic Effects on Photosynthetic Process in Rumex acetosa L Biomolecules, 2021, 11, 233.	1.8	29
6	Unraveling Sorghum Allelopathy in Agriculture: Concepts and Implications. Plants, 2021, 10, 1795.	1.6	33
7	Transcriptome and binding data indicate that citral inhibits single strand DNAâ€binding proteins. Physiologia Plantarum, 2020, 169, 99-109.	2.6	10
8	Allelopathic Potential of Aqueous Extract from Acacia melanoxylon R. Br. on Lactuca sativa. Plants, 2020, 9, 1228.	1.6	27
9	Imaging of Chlorophyll a Fluorescence in Natural Compound-Induced Stress Detection. Frontiers in Plant Science, 2020, 11, 583590.	1.7	29
10	Phytotoxic Activity of the Natural Compound Norharmane on Crops, Weeds and Model Plants. Plants, 2020, 9, 1328.	1.6	10
11	A natural indole alkaloid, norharmane, affects PIN expression patterns and compromises root growth in Arabidopsis thaliana. Plant Physiology and Biochemistry, 2020, 151, 378-390.	2.8	17
12	Genetic evidence for plural introduction pathways of the invasive weed Paterson's curse (Echium) Tj ETQq0 () 0 ₁ rgBT /C	Verlock 10 T
13	Natural product coumarins: biological and pharmacological perspectives. Biologia (Poland), 2019, 74, 863-888.	0.8	56
14	Transcriptome responses to the natural phytotoxin <i>t</i> halcone in <scp><i>Arabidopsis thaliana</i></scp> L Pest Management Science, 2019, 75, 2490-2504.	1.7	11
15	On the suitability of Eucalyptus globulus green manure for field weed control. Crop Protection, 2019, 121, 57-65.	1.0	22
16	Rosmarinic acid induces programmed cell death in Arabidopsis seedlings through reactive oxygen species and mitochondrial dysfunction. PLoS ONE, 2018, 13, e0208802.	1.1	38
17	Morpho-physiological responses of tall wheatgrass populations to different levels of water stress.	1.1	14

18Carbon (δ13C) and Nitrogen (δ15N) Stable Isotope Composition Provide New Insights into Phenotypic
Plasticity in Broad Leaf Weed Rumex acetosa under Allelochemical Stress. Molecules, 2018, 23, 2449.1.75

Manuel JoaquÃn Reigosa

#	Article	IF	CITATIONS
19	Faba bean as green manure for field weed control in maize. Weed Research, 2018, 58, 437-449.	0.8	25
20	Genotypic differences in agro-physiological, biochemical and isotopic responses to salinity stress in quinoa (Chenopodium quinoa Willd.) plants: Prospects for salinity tolerance and yield stability. Plant Physiology and Biochemistry, 2018, 129, 411-420.	2.8	52
21	Analysis of the adsorption and retention models for Cd, Cr, Cu, Ni, Pb, and Zn through neural networks: selection of variables and competitive model. Environmental Science and Pollution Research, 2018, 25, 25551-25564.	2.7	3
22	The Consistency Between Phytotoxic Effects and the Dynamics of Allelochemicals Release from Eucalyptus globulus Leaves Used as Bioherbicide Green Manure. Journal of Chemical Ecology, 2018, 44, 658-670.	0.9	43
23	Activities and Novel Applications of Secondary Metabolite Coumarins. Planta Daninha, 2018, 36, .	O.5	20
24	Elucidating the Phytotoxic Potential of Natural Compounds. , 2018, , 363-378.		2
25	Unravelling the bioherbicide potential of Eucalyptus globulus Labill: Biochemistry and effects of its aqueous extract. PLoS ONE, 2018, 13, e0192872.	1.1	53
26	The natural compound podophyllotoxin induces growth inhibition and microtubule condensation on arabidopsis roots. Allelopathy Journal, 2018, 45, 255-262.	0.2	2
27	Terpenoid <i>trans</i> â€caryophyllene inhibits weed germination and induces plant water status alteration and oxidative damage in adult <i>Arabidopsis</i> . Plant Biology, 2017, 19, 79-89.	1.8	49
28	Soil Cd, Cr, Cu, Ni, Pb and Zn sorption and retention models using SVM: Variable selection and competitive model. Science of the Total Environment, 2017, 593-594, 508-522.	3.9	42
29	Evaluation of photosynthetic performance and carbon isotope discrimination in perennial ryegrass (Lolium perenne L.) under allelochemicals stress. Ecotoxicology, 2017, 26, 613-624.	1.1	25
30	Auxin-like effects of the natural coumarin scopoletin on Arabidopsis cell structure and morphology. Journal of Plant Physiology, 2017, 218, 45-55.	1.6	35
31	Plasma membrane depolarization precedes photosynthesis damage and long-term leaf bleaching in (E)-chalcone-treated Arabidopsis shoots. Journal of Plant Physiology, 2017, 218, 56-65.	1.6	10
32	Analysis of the Importance of Oxides and Clays in Cd, Cr, Cu, Ni, Pb and Zn Adsorption and Retention with Regression Trees. PLoS ONE, 2017, 12, e0168523.	1.1	21
33	Loss of Gravitropism in Farnesene-Treated Arabidopsis Is Due to Microtubule Malformations Related to Hormonal and ROS Unbalance. PLoS ONE, 2016, 11, e0160202.	1.1	46
34	BIOLOGICAL ACTIVITIES AND NOVEL APPLICATIONS OF CHALCONES. Planta Daninha, 2016, 34, 607-616.	0.5	60
35	The plant secondary metabolite citral alters water status and prevents seed formation in <i>Arabidopsis thaliana</i> . Plant Biology, 2016, 18, 423-432.	1.8	14
36	Biochemical, physiological and isotopic responses to natural product p-hydroxybenzoic acid in Cocksfoot (Dactylis glomerata L.). Plant Growth Regulation, 2015, 75, 783-792.	1.8	18

Manuel JoaquÃn Reigosa

#	Article	IF	CITATIONS
37	Characterization of Xanthophyll Pigments, Photosynthetic Performance, Photon Energy Dissipation, Reactive Oxygen Species Generation and Carbon Isotope Discrimination during Artemisinin-Induced Stress in Arabidopsis thaliana. PLoS ONE, 2015, 10, e0114826.	1.1	24
38	Phytotoxic Potential of Trans-chalcone on Crop Plants and Model Species. Journal of Plant Growth Regulation, 2014, 33, 181-194.	2.8	24
39	Higher peroxidase activity, leaf nutrient contents and carbon isotope composition changes in Arabidopsis thaliana are related to rutin stress. Journal of Plant Physiology, 2014, 171, 1325-1333.	1.6	25
40	Citral Induces Auxin and Ethylene-Mediated Malformations and Arrests Cell Division in Arabidopsis thaliana Roots. Journal of Chemical Ecology, 2013, 39, 271-282.	0.9	66
41	Individual and joint activity of terpenoids, isolated from <i>Calamintha nepeta</i> extract, on <i>Arabidopsis thaliana</i> . Natural Product Research, 2013, 27, 2297-2303.	1.0	28
42	The Phytotoxic Potential of the Terpenoid Citral on Seedlings and Adult Plants. Weed Science, 2013, 61, 469-481.	0.8	28
43	<i>Eucalyptus globulus</i> Leaves Incorporated as Green Manure for Weed Control in Maize. Weed Science, 2013, 61, 154-161.	0.8	39
44	Allelopathic research in Brazil. Acta Botanica Brasilica, 2013, 27, 629-646.	0.8	55
45	The role of peroxidases on the mode of action of chalcone in Arabidopsis roots. Plant Signaling and Behavior, 2012, 7, 1274-1276.	1.2	8
46	Invasion by the leguminous tree Acacia dealbata (Mimosaceae) reduces the native understorey plant species in different communities. Australian Journal of Botany, 2012, 60, 669.	0.3	51
47	Mode of Action of Monoterpenes in Plant-Plant Interactions. Current Bioactive Compounds, 2012, 8, 80-89.	0.2	20
48	Tolerance of Arabidopsis thaliana to the Allelochemical Protocatechualdehyde. Journal of Plant Growth Regulation, 2012, 31, 406-415.	2.8	9
49	Early photosynthetic response of Arabidopsis thaliana to temperature and salt stress conditions. Russian Journal of Plant Physiology, 2012, 59, 640-647.	O.5	6
50	Seedling growth, leaf water status and signature of stable carbon isotopes in C3 perennials exposed to natural phytochemicals. Australian Journal of Botany, 2012, 60, 676.	0.3	19
51	The early response of Arabidopsis thaliana to cadmium- and copper-induced stress. Environmental and Experimental Botany, 2012, 78, 1-9.	2.0	33
52	The natural compound transâ€chalcone induces programmed cell death in <i>Arabidopsis thaliana</i> roots. Plant, Cell and Environment, 2012, 35, 1500-1517.	2.8	53
53	Imaging chlorophyll a fluorescence reveals specific spatial distributions under different stress conditions. Flora: Morphology, Distribution, Functional Ecology of Plants, 2011, 206, 836-844.	0.6	25
54	Early senescence induced by 2-3H-benzoxazolinone (BOA) in Arabidopsis thaliana. Journal of Plant Physiology, 2011, 168, 863-870.	1.6	25

Manuel JoaquÃn Reigosa

#	Article	IF	CITATIONS
55	Allelopathic potential of <i>Acacia melanoxylon</i> on the germination and root growth of native species. Weed Biology and Management, 2011, 11, 18-28.	0.6	41
56	A chlorophyll fluorescence analysis of photosynthetic efficiency, quantum yield and photon energy dissipation in PSII antennae of Lactuca sativa L. leaves exposed to cinnamic acid. Plant Physiology and Biochemistry, 2011, 49, 1290-1298.	2.8	47
57	Allelopathic interference of invasive Acacia dealbata Link on the physiological parameters of native understory species. Plant Ecology, 2011, 212, 403-412.	0.7	83
58	Ecophysiological responses of three native herbs to phytotoxic potential of invasive Acacia melanoxylon R. Br Agroforestry Systems, 2011, 83, 149-166.	0.9	42
59	Benzoxazolin-2(3H)-one (BOA) induced changes in leaf water relations, photosynthesis and carbon isotope discrimination in Lactuca sativa. Plant Physiology and Biochemistry, 2011, 49, 825-834.	2.8	17
60	Allelochemical stress inhibits growth, leaf water relations, PSII photochemistry, non-photochemical fluorescence quenching, and heat energy dissipation in three C3 perennial species. Journal of Experimental Botany, 2011, 62, 4533-4545.	2.4	117
61	The genus Acacia as invader: the characteristic case of Acacia dealbata Link in Europe. Annals of Forest Science, 2010, 67, 101-101.	0.8	170
62	Reduced Photosynthetic Activity is Directly Correlated with 2-(3H)-benzoxazolinone Accumulation in Lettuce Leaves. Journal of Chemical Ecology, 2010, 36, 205-209.	0.9	23
63	Differential responses to allelopathic compounds released by the invasive Acacia dealbata Link (Mimosaceae) indicate stimulation of its own seed. Australian Journal of Botany, 2010, 58, 546.	0.3	42
64	2â€3 <i>H</i> â€Benzoxazolinone (BOA) induces loss of salt tolerance in saltâ€adapted plants. Plant Biology, 2009, 11, 582-590.	1.8	10
65	Degradation of fuel oil in salt marsh soils affected by the Prestige oil spill. Journal of Hazardous Materials, 2009, 166, 1020-1029.	6.5	14
66	Classification and regression trees (CARTs) for modelling the sorption and retention of heavy metals by soil. Journal of Hazardous Materials, 2009, 167, 615-624.	6.5	47
67	The natural compound benzoxazolin-2(3H)-one selectively retards cell cycle in lettuce root meristems. Phytochemistry, 2008, 69, 2172-2179.	1.4	62
68	A tree regression analysis of factors determining the sorption and retention of heavy metals by soil. Geoderma, 2008, 147, 75-85.	2.3	35
69	Genomic Approaches to Understanding Allelochemical Effects on Plants. , 2008, , 157-167.		7
70	Phytotoxic Effects of 21 Plant Secondary Metabolites on Arabidopsis thaliana Germination and Root Growth. Journal of Chemical Ecology, 2007, 33, 1456-1466.	0.9	120
71	Allelopathy and abiotic stress. , 2006, , 171-209.		47

72 Introduction to allelopathy. , 2006, , 1-9.

#	Article	IF	CITATIONS
73	Cell cycle analyses for understanding growth inhibition. , 2006, , 141-156.		1
74	Forest ecosystems and allelopathy. , 2006, , 451-463.		5
75	Whole Plant Response of Lettuce After Root Exposure to BOA (2(3H)-Benzoxazolinone). Journal of Chemical Ecology, 2005, 31, 2689-2703.	0.9	59
76	Detoxification and Transcriptome Response in Arabidopsis Seedlings Exposed to the Allelochemical Benzoxazolin-2(3H)-one. Journal of Biological Chemistry, 2005, 280, 21867-21881.	1.6	165
77	Allelopathic Evidence in the Poaceae. Botanical Review, The, 2003, 69, 300-319.	1.7	53
78	Comparative physiological effects of three allelochemicals and two herbicides on Dactylis glomerata. Acta Physiologiae Plantarum, 2002, 24, 385-392.	1.0	24
79	Allelopathic Effects of Tree Species on Some Soil Microbial Populations and Herbaceous Plants. Biologia Plantarum, 2001, 44, 269-275.	1.9	53
80	Allelopathy in Agroecosystems in Spain. The Journal of Crop Improvement: Innovations in Practiceory and Research, 2001, 4, 415-432.	0.4	1
81	Phenotypic plasticity and acclimation to water deficits in velvet-grass: a long-term greenhouse experiment. Changes in leaf morphology, photosynthesis and stress-induced metabolites. Journal of Plant Physiology, 2000, 157, 383-393.	1.6	65
82	Effect of phenolic compounds on the germination of six weeds species. Plant Growth Regulation, 1999, 28, 83-88.	1.8	152
83	Ecophysiological Approach in Allelopathy. Critical Reviews in Plant Sciences, 1999, 18, 577-608.	2.7	218
84	Allelopathic Effects of Exotic Tree Species on Microorganisms and Plants in Galicia (Spain). Forestry Sciences, 1998, , 293-300.	0.4	1
85	Do Germination Indices Adequately Reflect Allelochemical Effects on the Germination Process?. Journal of Chemical Ecology, 1997, 23, 2445-2453.	0.9	166
86	Photosynthesis of natural cocksfoot populations under water and salt stresses. Biologia Plantarum, 1996, 38, 413.	1.9	4
87	Allelopathic effects of Acacia melanoxylon R.Br. phyllodes during their decomposition. Forest Ecology and Management, 1995, 77, 53-63.	1.4	60
88	Comparative analysis of allelopathic effects produced by four forestry species during decomposition process in their soils in Galicia (NW Spain). Journal of Chemical Ecology, 1994, 20, 3005-3015.	0.9	57
89	Release of allelochemical agents from litter, throughfall, and topsoil in plantations ofEucalyptus globulus Labill in Spain. Journal of Chemical Ecology, 1991, 17, 147-160.	0.9	59
90	Rumex obtusifolius L: Release of allelochemical agents and their influence on small-scale spatial distribution of meadow species. Journal of Chemical Ecology, 1988, 14, 1763-1773.	0.9	18

134

#	Article	IF	CITATIONS
91	Asymmetric small-scale distribution and allelopathy: Interaction betweenRumex obtusifolius L. and meadow species. Journal of Chemical Ecology, 1988, 14, 1775-1786.	0.9	20

92 Ecophysiological Approach in Allelopathy. , 0, .

7