Stefan Kubik

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7432843/publications.pdf Version: 2024-02-01

		101384	114278
90	4,113	36	63
papers	citations	h-index	g-index
111 all docs	111 docs citations	111 times ranked	3295 citing authors

STEEAN KURK

#	Article	IF	CITATIONS
1	Anion recognition in water. Chemical Society Reviews, 2010, 39, 3648.	18.7	469
2	Amino acid containing anion receptors. Chemical Society Reviews, 2009, 38, 585-605.	18.7	244
3	Recognition of Anions by Synthetic Receptors in Aqueous Solution. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 2005, 52, 137-187.	1.6	215
4	Dynamic Combinatorial Optimization of a Neutral Receptor That Binds Inorganic Anions in Aqueous Solution. Journal of the American Chemical Society, 2003, 125, 7804-7805.	6.6	186
5	A Molecular Oyster: A Neutral Anion Receptor Containing Two Cyclopeptide Subunits with a Remarkable Sulfate Affinity in Aqueous Solution. Journal of the American Chemical Society, 2002, 124, 12752-12760.	6.6	176
6	Noncovalent Interactions within a Synthetic Receptor Can Reinforce Guest Binding. Journal of the American Chemical Society, 2006, 128, 11206-11210.	6.6	150
7	Large Increase in Cation Binding Affinity of Artificial Cyclopeptide Receptors by an Allosteric Effect. Journal of the American Chemical Society, 1999, 121, 5846-5855.	6.6	142
8	A Cyclic Hexapeptide ContainingL-Proline and 6-Aminopicolinic Acid Subunits Binds Anions in Water. Angewandte Chemie - International Edition, 2001, 40, 2648-2651.	7.2	131
9	A New Cyclic Pseudopeptide Composed of (I)-Proline and 3-Aminobenzoic Acid Subunits as a Ditopic Receptor for the Simultaneous Complexation of Cations and Anions. Journal of Organic Chemistry, 1999, 64, 9475-9486.	1.7	122
10	Synthesis and Self-Assembly of Pseudo-Spherical Homo- and Heterodimeric Capsules. Journal of the American Chemical Society, 1995, 117, 12733-12745.	6.6	103
11	Synthetic Lectins. Angewandte Chemie - International Edition, 2009, 48, 1722-1725.	7.2	95
12	Anion Recognition in Aqueous Media by Cyclopeptides and Other Synthetic Receptors. Accounts of Chemical Research, 2017, 50, 2870-2878.	7.6	90
13	Conformation and anion binding properties of cyclic hexapeptides containing L-4-hydroxyproline and 6-aminopicolinic acid subunits. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99, 5127-5132.	3.3	80
14	Transmembrane Fluoride Transport: Direct Measurement and Selectivity Studies. Journal of the American Chemical Society, 2016, 138, 16515-16522.	6.6	70
15	Dynamic combinatorial development of a neutral synthetic receptor that binds sulfate with nanomolar affinity in aqueous solution. Chemical Communications, 2011, 47, 9798.	2.2	68
16	Cyclic Hexapeptides with Free Carboxylate Groups as New Receptors for Monosaccharides. Organic Letters, 2001, 3, 2637-2640.	2.4	65
17	Supramolecular polymers based on dative boron–nitrogen bonds. Chemical Communications, 2012, 48, 7808.	2.2	62
18	Title is missing!. Die Makromolekulare Chemie, 1992, 193, 1071-1080.	1.1	58

#	Article	IF	CITATIONS
19	Selective Sensing of Sulfate in Aqueous Solution Using a Fluorescent Bis(cyclopeptide). Organic Letters, 2007, 9, 5271-5274.	2.4	52
20	Efficient stabilisation of a dihydrogenphosphate tetramer and a dihydrogenpyrophosphate dimer byÂa cyclic pseudopeptide containing 1,4-disubstituted 1,2,3-triazole moieties. Chemical Science, 2017, 8, 6005-6013.	3.7	50
21	Selective Recognition of Sulfate Anions by a Cyclopeptide-Derived Receptor in Aqueous Phosphate Buffer. Organic Letters, 2013, 15, 6238-6241.	2.4	49
22	High-Performance Fibers from Spider Silk. Angewandte Chemie - International Edition, 2002, 41, 2721-2723.	7.2	48
23	Circular dichroism and ultraviolet spectroscopyof complexes of amylose. Carbohydrate Research, 1992, 237, 1-10.	1.1	47
24	Anion-Binding Properties of a Cyclic Pseudohexapeptide Containing 1,5-Disubstituted 1,2,3-Triazole Subunits. Journal of Organic Chemistry, 2011, 76, 7084-7095.	1.7	47
25	Synthesis of α,α-dialkylated amino acids with adenine or thymine residues a new mild and facile hydrolysis of hydantoins. Tetrahedron Letters, 1994, 35, 6635-6638.	0.7	45
26	A Cyclopeptideâ€Derived Molecular Cage for Sulfate Ions That Closes with a Click. Chemistry - A European Journal, 2010, 16, 7241-7255.	1.7	45
27	An Enantioselective Fluorescence Sensor for Glucose Based on a Cyclic Tetrapeptide Containing Two Boronic Acid Binding Sites. European Journal of Organic Chemistry, 2006, 2006, 4177-4186.	1.2	42
28	Influence of linker structure on the anion binding affinity of biscyclopeptides. New Journal of Chemistry, 2007, 31, 2095.	1.4	41
29	Detoxification of VX and Other Vâ€Type Nerve Agents in Water at 37 °C and pHâ€7.4 by Substituted Sulfonatocalix[4]arenes. Angewandte Chemie - International Edition, 2016, 55, 12668-12672.	7.2	40
30	Effects of Solvent Properties on the Anion Binding of Neutral Water-Soluble Bis(cyclopeptides) in Water and Aqueous Solvent Mixtures. ACS Omega, 2017, 2, 3669-3680.	1.6	40
31	Fine Tuning of the Cation Affinity of Artificial Receptors Based on Cyclic Peptides by Intramolecular Conformational Control. European Journal of Organic Chemistry, 2001, 2001, 311-322.	1.2	39
32	Anion binding of a neutral bis(cyclopeptide) in water–methanol mixtures containing up to 95% water. Organic and Biomolecular Chemistry, 2014, 12, 8851-8860.	1.5	39
33	A neutral halogen bonding macrocyclic anion receptor based on a pseudocyclopeptide with three 5-iodo-1,2,3-triazole subunits. Chemical Communications, 2017, 53, 5095-5098.	2.2	37
34	Optimization of the binding properties of a synthetic anion receptor using rational and combinatorial strategies. Biosensors and Bioelectronics, 2005, 20, 2364-2375.	5.3	36
35	Highly efficient cyclosarin degradation mediated by a β-cyclodextrin derivative containing an oxime-derived substituent. Beilstein Journal of Organic Chemistry, 2011, 7, 1543-1554.	1.3	36
36	Structural Analysis of an Isolated Cyclic Tetrapeptide and its Monohydrate by Combined IR/UV Spectroscopy. ChemPhysChem, 2011, 12, 1981-1988.	1.0	36

#	Article	IF	CITATIONS
37	Tabun scavengers based on hydroxamic acid containing cyclodextrins. Chemical Communications, 2013, 49, 3425.	2.2	35
38	Characterization and Chemical Modification of Amylose Complexes. Starch/Staerke, 1993, 45, 220-225.	1.1	33
39	Intramolecular conformational control in a cyclic peptide composed of alternating l-proline and substituted 3-aminobenzoic acid subunits. Chemical Communications, 2000, , 633-634.	2.2	33
40	Enantioselective recognition of a chiral quaternary ammonium ion by C3 symmetric cyclic hexapeptides. Chemical Communications, 2003, , 1252-1253.	2.2	32
41	Matched/Mismatched Interaction of a Cyclic Hexapeptide with Ion Pairs Containing Chiral Cations and Chiral Anions. Journal of Organic Chemistry, 2005, 70, 4498-4501.	1.7	31
42	Dipeptide recognition in water mediated by mixed monolayer protected gold nanoparticles. Chemical Communications, 2015, 51, 14247-14250.	2.2	31
43	A new cyclic tetrapeptide composed of alternating l -proline and 3-aminobenzoic acid subunits. Tetrahedron Letters, 2001, 42, 7555-7558.	0.7	30
44	Oxoanion binding to a cyclic pseudopeptide containing 1,4-disubstituted 1,2,3-triazole moieties. Organic and Biomolecular Chemistry, 2017, 15, 102-113.	1.5	30
45	Editorial: Supramolecular chemistry in water. Organic and Biomolecular Chemistry, 2015, 13, 2499-2500.	1.5	29
46	Pseudo-Spherical Host Molecules: Synthesis, Dimerization, and Nucleation Effects. Angewandte Chemie International Edition in English, 1995, 34, 1885-1887.	4.4	28
47	Molecular Cages and Capsules with Functionalized Inner Surfaces. Topics in Current Chemistry, 2011, 319, 1-34.	4.0	26
48	Chirality sensing of terpenes, steroids, amino acids, peptides and drugs with acyclic cucurbit[<i>n</i>]urils and molecular tweezers. Chemical Communications, 2020, 56, 4652-4655.	2.2	26
49	Detoxification of alkyl methylphosphonofluoridates by an oxime-substituted β-cyclodextrin – An in vitro structure–activity study. Toxicology Letters, 2014, 224, 209-214.	0.4	25
50	Effectiveness of a substituted β-cyclodextrin to prevent cyclosarin toxicity in vivo. Toxicology Letters, 2014, 226, 222-227.	0.4	23
51	Detoxification of tabun at physiological pH mediated by substituted β-cyclodextrin and glucose derivatives containing oxime groups. Toxicology, 2012, 302, 163-171.	2.0	21
52	Functionalisable acyclic cucurbiturils. Organic Chemistry Frontiers, 2019, 6, 1555-1560.	2.3	20
53	Ultrasensitive electrochemical sensing of phosphate in water mediated by a dipicolylamine-zinc(II) complex. Sensors and Actuators B: Chemical, 2020, 321, 128474.	4.0	20
54	Inclusion compounds of derivatized amyloses. Macromolecular Symposia, 1995, 99, 93-102.	0.4	18

#	Article	IF	CITATIONS
55	When Molecules Meet in Waterâ€Recent Contributions of Supramolecular Chemistry to the Understanding of Molecular Recognition Processes in Water. ChemistryOpen, 2022, 11, e202200028.	0.9	15
56	A minimalistic approach to binding. Nature Chemistry, 2012, 4, 697-698.	6.6	13
57	Pseudokugelförmige Wirtmoleküle: Synthese, Dimerisierung und "Keimbildungseffekteâ€i,• Angewandte Chemie, 1995, 107, 2031-2033.	1.6	12
58	Elimination kinetics and molecular reaction mechanisms of cyclosarin (GF) by an oxime substituted β-cyclodextrin derivative in vitro. Toxicology Letters, 2015, 239, 41-52.	0.4	12
59	Electrochemical sensing of sulfate in aqueous solution with a cyclopeptide-dipyrromethene-Cu(II) or Co(II) complex attached to a gold electrode. Sensors and Actuators B: Chemical, 2019, 285, 536-545.	4.0	12
60	Formation of a cyclic tetrapeptide mimic by thermal azide–alkyne 1,3-dipolar cycloaddition. Chemical Communications, 2010, 46, 5307.	2.2	11
61	Anion Binding of a Cyclopeptideâ€Derived Molecular Cage in Aqueous Solvent Mixtures. ChemPlusChem, 2020, 85, 963-969.	1.3	11
62	Selective sensing of adenosine monophosphate (AMP) over adenosine diphosphate (ADP), adenosine triphosphate (ATP), and inorganic phosphates with zinc(<scp>ii</scp>)-dipicolylamine-containing gold nanoparticles. Organic and Biomolecular Chemistry, 2021, 19, 3893-3900.	1.5	11
63	Selective sensing of sulfate anions in water with cyclopeptide-decorated gold nanoparticles. Chemical Communications, 2020, 56, 10457-10460.	2.2	9
64	Complexation of arginine with a cyclopeptide in polar solvents and water. Journal of Supramolecular Chemistry, 2001, 1, 293-297.	0.4	8
65	Receptor properties of cyclic peptides composed of alternating natural amino acids and 3-aminobenzoic acid derivatives. Materials Science and Engineering C, 2001, 18, 125-133.	3.8	8
66	Pathways for the Reactions Between Neurotoxic Organophosphorus Compounds and Oximes or Hydroxamic Acids. European Journal of Organic Chemistry, 2016, 2016, 5831-5838.	1.2	8
67	Structural analyses of isolated cyclic tetrapeptides with varying amino acid residues. Physical Chemistry Chemical Physics, 2017, 19, 10718-10726.	1.3	8
68	Ion-channel mimetic sensor incorporating an anion-binding cyclopeptide designed for sulfate determination in dilute aqueous solutions. Journal of Electroanalytical Chemistry, 2018, 812, 249-257.	1.9	8
69	Palladium(II)-Mediated Assembly of a M ₂ L ₂ Macrocycle and M ₃ L ₆ Cage from a Cyclopeptide-Derived Ligand. Organic Letters, 2019, 21, 6442-6446.	2.4	8
70	A Cyclic Hexapeptide Containing L-Proline and 6-Aminopicolinic Acid Subunits Binds Anions in Water This work was sponsored by the Deutsche Forschungsgemeinschaft. S.K. thanks D. Kubik for her committed help with the synthetic work and Prof. G. Wulff for his support Angewandte Chemie - International Edition, 2001, 40, 2648-2651.	7.2	7
71	Side chain assisted nanotubular self-assembly of cyclic peptides at the air–water interface. Soft Matter, 2010, 6, 4701.	1.2	6

#	Article	IF	CITATIONS
73	Molecular inclusion within polymeric carbohydrate matrices. , 0, , 169-187.		5
74	Facile One-Step Synthesis of Mono-2-(p-Tolylsulfonyl)-β-cyclodextrin under Aqueous Conditions. Synthesis, 2007, 2007, 348-350.	1.2	5
75	Entgiftung von VX und anderen Vâ€Stoffen in Wasser bei 37 °C und pHâ€7.4 durch substituierte Sulfonatocalix[4]arene. Angewandte Chemie, 2016, 128, 12859-12863.	1.6	5
76	Influence of cyclic and acyclic cucurbiturils on the degradation pathways of the chemical warfare agent VX. Organic and Biomolecular Chemistry, 2020, 18, 5218-5227.	1.5	5
77	Chemical synthesis and complexing behaviour of branched cyclodextrins composed of an amylose and a β-cyclodextrin residue. Macromolecular Chemistry and Physics, 1994, 195, 1719-1732.	1.1	4
78	Synthesis and coupling reactions of alpha,alpha-dialkylated amino acids with nucleobase side chains Proceedings of the National Academy of Sciences of the United States of America, 1995, 92, 12013-12016.	3.3	4
79	Synthesis and Structural Characterization of a Cyclen-Derived Molecular Cage. Organic Letters, 2015, 17, 5850-5853.	2.4	4
80	Amino Acid-Based Receptors. , 2017, , 293-310.		4
81	Chapter 4. Synthetic Receptors for Small Organic and Inorganic Anions. Monographs in Supramolecular Chemistry, 2015, , 129-176.	0.2	3
82	X-ray reflectivity study of cyclic peptide monolayers at the air-water interface. Israel Journal of Chemistry, 2005, 45, 345-352.	1.0	2
83	Optical detection of di- and triphosphate anions with mixed monolayer-protected gold nanoparticles containing zinc(II)–dipicolylamine complexes. Beilstein Journal of Organic Chemistry, 2020, 16, 2687-2700.	1.3	2
84	Molecular tectonics: homochiral coordination polymers based on pyridyl-substituted cyclic tetrapeptides. CrystEngComm, 2016, 18, 7685-7689.	1.3	1
85	Gegenmittel bei Vergiftungen mit chemischen Kampfstoffen. Nachrichten Aus Der Chemie, 2017, 65, 766-771.	0.0	1
86	Characterizing the Properties of Anion-Binding Bis(cyclopeptides) with Solvent-Independent Energy Increments. Chemistry, 2022, 4, 419-430.	0.9	1
87	Cyclopeptides as Macrocyclic Host Molecules for Charged Guests. ChemInform, 2005, 36, no.	0.1	0
88	Toward Engineering Intra-Receptor Interactions into Bis(crown ethers). Natural Product Communications, 2012, 7, 1934578X1200700.	0.2	0
89	Front Cover: Pathways for the Reactions Between Neurotoxic Organophosphorus Compounds and Oximes or Hydroxamic Acids (Eur. J. Org. Chem. 35/2016). European Journal of Organic Chemistry, 2016, 2016, 5777-5777.	1.2	0
90	Synthetic Receptors Based on Abiotic Cyclo(pseudo)peptides. Molecules, 2022, 27, 2821.	1.7	0