Lawrence E Goldfinger

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7432323/publications.pdf

Version: 2024-02-01

42 papers

1,050 citations

16 h-index 32 g-index

42 all docs 42 docs citations

times ranked

42

1669 citing authors

#	Article	IF	CITATIONS
1	Defective RAB31-mediated megakaryocytic early endosomal trafficking of VWF, EGFR, and M6PR in <i>RUNX1</i> deficiency. Blood Advances, 2022, 6, 5100-5112.	5.2	3
2	High-efficiency unassisted transfection of platelets with naked double-stranded miRNAs modulates signal-activated translation and platelet function. Platelets, 2021, 32, 794-806.	2.3	9
3	Platelets and extracellular vesicles and their cross talk with cancer. Blood, 2021, 137, 3192-3200.	1.4	78
4	Platelet microRNAs inhibit primary tumor growth via broad modulation of tumor cell mRNA expression in ectopic pancreatic cancer in mice. PLoS ONE, 2021, 16, e0261633.	2.5	7
5	GRK6 regulates the hemostatic response to injury through its rate-limiting effects on GPCR signaling in platelets. Blood Advances, 2020, 4, 76-86.	5.2	14
6	Horizontal RNA transfer goes deep: platelet consumption and micro RNA utilization by vascular smooth muscle cells. Journal of Thrombosis and Haemostasis, 2019, 17, 1014-1017.	3.8	1
7	GPVI inhibitor as antitumor gateway drug. Blood, 2019, 133, 2633-2634.	1.4	O
8	ELMO1 deficiency enhances platelet function. Blood Advances, 2019, 3, 575-587.	5.2	12
9	Concepts and advances in cancer therapeutic vulnerabilities in RAS membrane targeting. Seminars in Cancer Biology, 2019, 54, 121-130.	9.6	12
10	Defective RAB1B-related megakaryocytic ER-to-Golgi transport in RUNX1 haplodeficiency: impact on von Willebrand factor. Blood Advances, 2018, 2, 797-806.	5.2	17
11	Platelet Microparticles and miRNA Transfer in Cancer Progression: Many Targets, Modes of Action, and Effects Across Cancer Stages. Frontiers in Cardiovascular Medicine, 2018, 5, 13.	2.4	39
12	RAB31-Mediated Endosomal Trafficking Is Defective in RUNX1 Haplodeficiency. Blood, 2018, 132, 519-519.	1.4	1
13	Platelet microparticles infiltrating solid tumors transfer miRNAs that suppress tumor growth. Blood, 2017, 130, 567-580.	1.4	175
14	Transcription Factor RUNX1 Regulates Platelet <i>PCTP</i> (Phosphatidylcholine Transfer Protein): Implications for Cardiovascular Events. Circulation, 2017, 136, 927-939.	1.6	18
15	Regulation of Ras signaling and function by plasma membrane microdomains. BioScience Trends, 2017, 11, 23-40.	3.4	13
16	Dicer1-mediated miRNA processing shapes the mRNA profile and function of murine platelets. Blood, 2016, 127, 1743-1751.	1.4	79
17	PCTP (Phosphatidylcholine Transfer Protein) is Regulated By RUNX1 in Platelets/Megakaryocytes and is Associated with Adverse Cardiovascular Events. Blood, 2016, 128, 365-365.	1.4	2
18	Inhibition of Galectin-1 Sensitizes HRAS-driven Tumor Growth to Rapamycin Treatment. Anticancer Research, 2016, 36, 5053-5062.	1.1	17

#	Article	IF	Citations
19	Abstract PR09: MicroRNA-24 transferred from platelet-derived microparticles to tumor cells in solid tumors targets mt-Nd2 mRNA and modulates mitochondrial function and tumor growth., 2016,,.		O
20	Abstract 1870: Inhibition of Galectin-1 sensitizes oncogenic H-Ras to Rapamycin treatment., 2016,,.		O
21	Abstract 2667: Platelet microparticles infiltrating solid tumors transfer miRNAs and modulate tumor angiogenesis and growth. , 2016, , .		1
22	RLIP76 regulates Arf6-dependent cell spreading and migration by linking ARNO with activated R-Ras at recycling endosomes. Biochemical and Biophysical Research Communications, 2015, 467, 785-791.	2.1	18
23	Abstract 4036: Palmitoylated Ras-driven MAPK signaling, transformation and tumorigenesis, but not tumor progression, are spatially regulated by plasma membrane microdomains. , 2015, , .		1
24	Abstract 2141: Rab25 and Rab-coupling protein (RCP) coordinate H-Ras and EGFR post-Golgi vesicle trafficking, plasma membrane targeting, and function in mammary epithelial cells., 2015,,.		0
25	Transcription Factor RUNX1 Regulates Pctp (Phosphatidylcholine Transfer Protein) in Platelets: A Potential Role in Regulating Platelet Function. Blood, 2015, 126, 2247-2247.	1.4	6
26	Threeâ€Dimensional Reconstruction of Neovasculature in Solid Tumors and Basement Membrane Matrix Using <i>Ex Vivo</i> Xâ€ray Microcomputed Tomography. Microcirculation, 2014, 21, 159-170.	1.8	8
27	Activation of PI3K and Râ€ras signaling promotes the extension of sensory axons on inhibitory chondroitin sulfate proteoglycans. Developmental Neurobiology, 2014, 74, 918-933.	3.0	19
28	RLIP76 regulates HIFâ€1 activity, VEGF expression and secretion in tumor cells, and secretome transactivation of endothelial cells. FASEB Journal, 2014, 28, 4158-4168.	0.5	22
29	The RLIP76 N-terminus binds ARNO to regulate PI 3-kinase, Arf6 and Rac signaling, cell spreading and migration. Biochemical and Biophysical Research Communications, 2014, 454, 560-565.	2.1	17
30	RhoG Protein Regulates Glycoprotein VI-Fc Receptor \hat{I}^3 -Chain Complex-mediated Platelet Activation and Thrombus Formation. Journal of Biological Chemistry, 2013, 288, 34230-34238.	3.4	19
31	Rhog Regulates GPVI/FcRÎ ³ -Mediated Platelet Activation and Thrombus Formation. Blood, 2013, 122, 1060-1060.	1.4	1
32	Palmitoylation regulates vesicular trafficking of R-Ras to membrane ruffles and effects on ruffling and cell spreading. Small GTPases, 2012, 3, 139-153.	1.6	23
33	RALBP1/RLIP76 Depletion in Mice Suppresses Tumor Growth by Inhibiting Tumor Neovascularization. Cancer Research, 2012, 72, 5165-5173.	0.9	48
34	Protein kinase \hat{Cl} mediates the activation of protein kinase D2 in platelets. Biochemical Pharmacology, 2011, 82, 720-727.	4.4	11
35	Regulation of platelet myosin light chain (MYL9) by RUNX1: implications for thrombocytopenia and platelet dysfunction in RUNX1 haplodeficiency. Blood, 2010, 116, 6037-6045.	1.4	70
36	Protein Kinase C Delta Mediates the Activation of Protein Kinase D In Platelets. Blood, 2010, 116, 2021-2021.	1.4	0

#	Article	IF	CITATIONS
37	A small molecule inhibitor of $\hat{l}\pm 4$ integrin-dependent cell migration. Bioorganic and Medicinal Chemistry, 2009, 17, 977-980.	3.0	8
38	Choose your own path: specificity in Ras GTPase signaling. Molecular BioSystems, 2008, 4, 293.	2.9	26
39	Localized α4 Integrin Phosphorylation Directs Shear Stress–Induced Endothelial Cell Alignment. Circulation Research, 2008, 103, 177-185.	4.5	50
40	Integrin-mediated Protein Kinase A Activation at the Leading Edge of Migrating Cells. Molecular Biology of the Cell, 2008, 19, 4930-4941.	2.1	88
41	An Experimentally Derived Database of Candidate Ras-Interacting Proteins. Journal of Proteome Research, 2007, 6, 1806-1811.	3.7	40
42	RLIP76 (RalBP1) is an R-Ras effector that mediates adhesion-dependent Rac activation and cell migration. Journal of Cell Biology, 2006, 174, 877-888.	5.2	77