## Hongli Mao

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7432105/publications.pdf Version: 2024-02-01



Ηονου Μλο

| #  | Article                                                                                                                                                                                                                          | IF   | CITATIONS |
|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 1  | Bioinspired design of mannose-decorated globular lysine dendrimers promotes diabetic wound healing by orchestrating appropriate macrophage polarization. Biomaterials, 2022, 280, 121323.                                        | 11.4 | 30        |
| 2  | Hydrogels for 3D embedded bioprinting: a focused review on bioinks and support baths. Journal of<br>Materials Chemistry B, 2022, 10, 1897-1907.                                                                                  | 5.8  | 28        |
| 3  | Multifunctional polysaccharide hydrogels for skin wound healing prepared by photoinitiator-free<br>crosslinking. Carbohydrate Polymers, 2022, 285, 119254.                                                                       | 10.2 | 26        |
| 4  | Bioactive hydrogels based on polysaccharides and peptides for soft tissue wound management.<br>Journal of Materials Chemistry B, 2022, 10, 7148-7160.                                                                            | 5.8  | 13        |
| 5  | Gallium(III)-Mediated Dual-Cross-Linked Alginate Hydrogels with Antibacterial Properties for<br>Promoting Infected Wound Healing. ACS Applied Materials & Interfaces, 2022, 14, 22426-22442.                                     | 8.0  | 36        |
| 6  | Biodegradable gemcitabine-loaded microdevice with sustained local drug delivery and improved tumor recurrence inhibition abilities for postoperative pancreatic tumor treatment. Drug Delivery, 2022, 29, 1595-1607.             | 5.7  | 7         |
| 7  | Photoclick polysaccharide-based bioinks with an extended biofabrication window for 3D embedded bioprinting. Biomaterials Science, 2022, 10, 4479-4491.                                                                           | 5.4  | 8         |
| 8  | VE-cadherin-based matrix promoting the self-reconstruction of pro-vascularization<br>microenvironments and endothelial differentiation of human mesenchymal stem cells. Journal of<br>Materials Chemistry B, 2021, 9, 3357-3370. | 5.8  | 6         |
| 9  | A tumor-activatable peptide supramolecular nanoplatform for the delivery of dual-gene targeted siRNAs for drug-resistant cancer treatment. Nanoscale, 2021, 13, 4887-4898.                                                       | 5.6  | 12        |
| 10 | A Bacteria-Inspired Morphology Genetic Biomedical Material: Self-Propelled Artificial Microbots for<br>Metastatic Triple Negative Breast Cancer Treatment. ACS Nano, 2021, 15, 4845-4860.                                        | 14.6 | 22        |
| 11 | Facile fabrication of multi-pocket nanoparticles with stepwise size transition for promoting deep penetration and tumor targeting. Journal of Nanobiotechnology, 2021, 19, 111.                                                  | 9.1  | 12        |
| 12 | Bioadhesives: Current hotspots and emerging challenges. Current Opinion in Biomedical Engineering, 2021, 18, 100271.                                                                                                             | 3.4  | 9         |
| 13 | Versatile Mitogenic and Differentiationâ€Inducible Layer Formation by Underwater Adhesive<br>Polypeptides. Advanced Science, 2021, 8, 2100961.                                                                                   | 11.2 | 3         |
| 14 | Subâ€50 nm Supramolecular Nanohybrids with Active Targeting Corona for Imageâ€Guided Solid Tumor<br>Treatment and Metastasis Inhibition. Advanced Functional Materials, 2021, 31, 2103272.                                       | 14.9 | 7         |
| 15 | A double-network polysaccharide-based composite hydrogel for skin wound healing. Carbohydrate<br>Polymers, 2021, 261, 117870.                                                                                                    | 10.2 | 115       |
| 16 | Bacterium-mimicking sequentially targeted therapeutic nanocomplexes based on O-carboxymethyl chitosan and their cooperative therapy by dual-modality light manipulation. Carbohydrate Polymers, 2021, 264, 118030.               | 10.2 | 6         |
| 17 | Injectable Hydrogel Based on Modified Gelatin and Sodium Alginate for Soft-Tissue Adhesive. Frontiers<br>in Chemistry, 2021, 9, 744099.                                                                                          | 3.6  | 15        |
| 18 | Fast and High Strength Soft Tissue Bioadhesives Based on a Peptide Dendrimer with Antimicrobial<br>Properties and Hemostatic Ability. ACS Applied Materials & Interfaces, 2020, 12, 4241-4253.                                   | 8.0  | 63        |

Hongli Mao

| #  | Article                                                                                                                                                                                                                                                    | IF  | CITATIONS |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----------|
| 19 | Recent advances and challenges in materials for 3D bioprinting. Progress in Natural Science:<br>Materials International, 2020, 30, 618-634.                                                                                                                | 4.4 | 77        |
| 20 | Injectable Adhesive Self-Healing Multicross-Linked Double-Network Hydrogel Facilitates<br>Full-Thickness Skin Wound Healing. ACS Applied Materials & Interfaces, 2020, 12, 57782-57797.                                                                    | 8.0 | 154       |
| 21 | VE-cadherin functionalized injectable PAMAM/HA hydrogel promotes endothelial differentiation of hMSCs and vascularization. Applied Materials Today, 2020, 20, 100690.                                                                                      | 4.3 | 13        |
| 22 | Cell migration and growth induced by photo-immobilised vascular endothelial growth factor (VEGF)<br>isoforms. Journal of Materials Chemistry B, 2019, 7, 4272-4279.                                                                                        | 5.8 | 23        |
| 23 | Engineering Niches for Embryonic and Induced Pluripotent Stem Cells. , 2017, , 445-457.                                                                                                                                                                    |     | 3         |
| 24 | Insight into the interactions between nanoparticles and cells. Biomaterials Science, 2017, 5, 173-189.                                                                                                                                                     | 5.4 | 78        |
| 25 | Serum-free culturing of human mesenchymal stem cells with immobilized growth factors. Journal of<br>Materials Chemistry B, 2017, 5, 928-934.                                                                                                               | 5.8 | 18        |
| 26 | Enhanced Biological Functions of Human Mesenchymal Stem ell Aggregates Incorporating<br>E adherinâ€Modified PLGA Microparticles. Advanced Healthcare Materials, 2016, 5, 1949-1959.                                                                        | 7.6 | 20        |
| 27 | Surface modification with E-cadherin fusion protein for mesenchymal stem cell culture. Journal of Materials Chemistry B, 2016, 4, 4267-4277.                                                                                                               | 5.8 | 14        |
| 28 | Designed Stem Cell Aggregates: Enhanced Biological Functions of Human Mesenchymal Stemâ€Cell<br>Aggregates Incorporating Eâ€Cadherinâ€Modified PLGA Microparticles (Adv. Healthcare Mater. 15/2016).<br>Advanced Healthcare Materials, 2016, 5, 1992-1992. | 7.6 | 0         |
| 29 | The significance of membrane fluidity of feeder cell-derived substrates for maintenance of iPS cell stemness. Scientific Reports, 2015, 5, 11386.                                                                                                          | 3.3 | 25        |
| 30 | Nanolayer formation on titanium by phosphonated gelatin for cell adhesion and growth enhancement. International Journal of Nanomedicine, 2015, 10, 5597.                                                                                                   | 6.7 | 4         |
| 31 | Cell response to single-walled carbon nanotubes in hybrid porous collagen sponges. Colloids and<br>Surfaces B: Biointerfaces, 2015, 126, 63-69.                                                                                                            | 5.0 | 18        |
| 32 | Cellular effects of magnetic nanoparticles explored by atomic force microscopy. Biomaterials Science, 2015, 3, 1284-1290.                                                                                                                                  | 5.4 | 12        |
| 33 | Variation of Mechanical Property of Single-Walled Carbon Nanotubes-Treated Cells Explored by<br>Atomic Force Microscopy. Journal of Biomedical Nanotechnology, 2014, 10, 651-659.                                                                          | 1.1 | 13        |
| 34 | Effect of Single-Wall Carbon Nanotubes on Mechanical Property of Chondrocytes. Journal of<br>Nanoscience and Nanotechnology, 2014, 14, 2459-2465.                                                                                                          | 0.9 | 13        |
| 35 | Long-term stem cell labeling by collagen-functionalized single-walled carbon nanotubes. Nanoscale, 2014, 6, 1552-1559.                                                                                                                                     | 5.6 | 16        |
| 36 | Cellular Uptake of Single-Walled Carbon Nanotubes in 3D Extracellular Matrix-Mimetic Composite<br>Collagen Hydrogels. Journal of Nanoscience and Nanotechnology, 2014, 14, 2487-2492.                                                                      | 0.9 | 11        |

| #  | Article                                                                                                                                                                                                           | IF   | CITATIONS |
|----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|-----------|
| 37 | Uptake and intracellular distribution of collagen-functionalized single-walled carbon nanotubes.<br>Biomaterials, 2013, 34, 2472-2479.                                                                            | 11.4 | 55        |
| 38 | The Synergistic Effect of Aligned Nanofibers and Hyaluronic Acid Modification on Endothelial Cell<br>Behavior for Vascular Tissue Engineering. Journal of Nanoscience and Nanotechnology, 2011, 11,<br>6718-6725. | 0.9  | 19        |