Giorgio Buonanno

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7432082/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	How can airborne transmission of COVID-19 indoors be minimised?. Environment International, 2020, 142, 105832.	10.0	933
2	Estimation of airborne viral emission: Quanta emission rate of SARS-CoV-2 for infection risk assessment. Environment International, 2020, 141, 105794.	10.0	545
3	Transmission of SARSâ€CoVâ€2 by inhalation of respiratory aerosol in the Skagit Valley Chorale superspreading event. Indoor Air, 2021, 31, 314-323.	4.3	505
4	Indoor aerosols: from personal exposure to risk assessment. Indoor Air, 2013, 23, 462-487.	4.3	347
5	Quantitative assessment of the risk of airborne transmission of SARS-CoV-2 infection: Prospective and retrospective applications. Environment International, 2020, 145, 106112.	10.0	306
6	Dismantling myths on the airborne transmission of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Journal of Hospital Infection, 2021, 110, 89-96.	2.9	264
7	Airborne particles in indoor environment of homes, schools, offices and aged care facilities: The main routes of exposure. Environment International, 2017, 108, 75-83.	10.0	256
8	A paradigm shift to combat indoor respiratory infection. Science, 2021, 372, 689-691.	12.6	192
9	Urban air quality comparison for bus, tram, subway and pedestrian commutes in Barcelona. Environmental Research, 2015, 142, 495-510.	7.5	136
10	Children's well-being at schools: Impact of climatic conditions and air pollution. Environment International, 2016, 94, 196-210.	10.0	128
11	Health effects of daily airborne particle dose in children: Direct association between personal dose and respiratory health effects. Environmental Pollution, 2013, 180, 246-250.	7.5	119
12	Tracing surface and airborne SARS-CoV-2 RNA inside public buses and subway trains. Environment International, 2021, 147, 106326.	10.0	119
13	The effect of natural ventilation strategy on indoor air quality in schools. Science of the Total Environment, 2017, 595, 894-902.	8.0	118
14	Aerosol deposition doses in the human respiratory tree of electronic cigarette smokers. Environmental Pollution, 2015, 196, 257-267.	7.5	116
15	Airborne particle emission of a commercial 3D printer: the effect of filament material and printing temperature. Indoor Air, 2017, 27, 398-408.	4.3	109
16	Short-term effects of electronic and tobacco cigarettes on exhaled nitric oxide. Toxicology and Applied Pharmacology, 2014, 278, 9-15.	2.8	108
17	Effects of air pollution on health: A mapping review of systematic reviews and meta-analyses. Environmental Research, 2021, 201, 111487.	7.5	104
18	Silver nanoparticles inhaled during pregnancy reach and affect the placenta and the foetus. Nanotoxicology, 2017, 11, 687-698.	3.0	102

#	Article	IF	CITATIONS
19	Individual dose and exposure of Italian children to ultrafine particles. Science of the Total Environment, 2012, 438, 271-277.	8.0	96
20	School Children's Personal Exposure to Ultrafine Particles in the Urban Environment. Environmental Science & Technology, 2014, 48, 113-120.	10.0	91
21	Chemical, dimensional and morphological ultrafine particle characterization from a waste-to-energy plant. Waste Management, 2011, 31, 2253-2262.	7.4	65
22	Second-hand aerosol from tobacco and electronic cigarettes: Evaluation of the smoker emission rates and doses and lung cancer risk of passive smokers and vapers. Science of the Total Environment, 2018, 642, 137-147.	8.0	54
23	Particle doses in the pulmonary lobes of electronic and conventional cigarette users. Environmental Pollution, 2015, 202, 24-31.	7.5	49
24	Characterization of particle emission from laser printers. Science of the Total Environment, 2017, 586, 623-630.	8.0	48
25	Indoor Air Quality in Naturally Ventilated Italian Classrooms. Atmosphere, 2015, 6, 1652-1675.	2.3	46
26	Vehicle interior air quality conditions when travelling by taxi. Environmental Research, 2019, 172, 529-542.	7.5	46
27	In vitro lung toxicity of indoor PM10 from a stove fueled with different biomasses. Science of the Total Environment, 2019, 649, 1422-1433.	8.0	45
28	Variations in coil temperature/power and eâ€liquid constituents change size and lung deposition of particles emitted by an electronic cigarette. Physiological Reports, 2019, 7, e14093.	1.7	44
29	Ultrafine Particle Generation through Atomization Technique: The Influence of the Solution. Aerosol and Air Quality Research, 2013, 13, 1667-1677.	2.1	44
30	Ultrafine particle emission of waste incinerators and comparison to the exposure of urban citizens. Waste Management, 2015, 37, 75-81.	7.4	42
31	Investigations into factors affecting personal exposure to particles in urban microenvironments using low-cost sensors. Environment International, 2018, 120, 496-504.	10.0	40
32	Infection risk in gyms during physical exercise. Environmental Science and Pollution Research, 2018, 25, 19675-19686.	5.3	39
33	Detached eddy simulation of turbulent flow in isolated street canyons of different aspect ratios. Atmospheric Pollution Research, 2015, 6, 351-364.	3.8	37
34	Measurements of electronic cigarette-generated particles for the evaluation of lung cancer risk of active and passive users. Journal of Aerosol Science, 2018, 115, 1-11.	3.8	37
35	Numerical Simulation of Ultrafine Particle Dispersion in Urban Street Canyons with the Spalart-Allmaras Turbulence Model. Aerosol and Air Quality Research, 2013, 13, 1423-1437.	2.1	36
36	Smokers' lung cancer risk related to the cigarette-generated mainstream particles. Journal of Aerosol Science, 2017, 107, 41-54.	3.8	33

#	Article	IF	CITATIONS
37	The airborne contagiousness of respiratory viruses: A comparative analysis and implications for mitigation. Geoscience Frontiers, 2022, 13, 101285.	8.4	32
38	The impact of frying aerosol on human brain activity. NeuroToxicology, 2019, 74, 149-161.	3.0	30
39	Children's personal exposure to air pollution in rural villages in Bhutan. Environmental Research, 2015, 140, 691-698.	7.5	26
40	Metrological Performances of a Diffusion Charger Particle Counter for Personal Monitoring. Aerosol and Air Quality Research, 2014, 14, 156-167.	2.1	26
41	Effects of the exposure to ultrafine particles on heart rate in a healthy population. Science of the Total Environment, 2019, 650, 2403-2410.	8.0	25
42	Lung cancer risk assessment at receptor site of a waste-to-energy plant. Waste Management, 2016, 56, 207-215.	7.4	24
43	Increased close proximity airborne transmission of the SARS-CoV-2 Delta variant. Science of the Total Environment, 2022, 816, 151499.	8.0	24
44	Occupational exposure to airborne particles and other pollutants in an aviation base. Environmental Pollution, 2012, 170, 78-87.	7.5	22
45	Risk of SARS oVâ€⊋ in a car cabin assessed through 3D CFD simulations. Indoor Air, 2022, 32, e13012.	4.3	20
46	Metrological Assessment of a Portable Analyzer for Monitoring the Particle Size Distribution of Ultrafine Particles. Annals of Occupational Hygiene, 2014, 58, 860-76.	1.9	17
47	NSAM-derived total surface area versus SMPS-derived "mobility equivalent―surface area for different environmentally relevant aerosols. Journal of Aerosol Science, 2013, 66, 1-11.	3.8	16
48	Composition of Metallic Elements and Size Distribution of Fine and Ultrafine Particles in a Steelmaking Factory. International Journal of Environmental Research and Public Health, 2018, 15, 1192.	2.6	15
49	Schoolchildren's personal exposure to ultrafine particles in and near Accra, Ghana. Environment International, 2019, 133, 105223.	10.0	15
50	Ultrafine particle emission from floor cleaning products. Indoor Air, 2021, 31, 63-73.	4.3	14
51	Influential parameters on ultrafine particle concentration downwind at waste-to-energy plants. Waste Management, 2015, 38, 157-163.	7.4	13
52	Calculation of the distortion coefficient and associated uncertainty of PTB and LNE 1 GPa pressure balances using finite element analysis—EUROMET project 463. Metrologia, 2005, 42, S202-S206.	1.2	12
53	Tracheobronchial and Alveolar Particle Surface Area Doses in Smokers. Atmosphere, 2017, 8, 19.	2.3	12
54	The impact on heart rate and blood pressure following exposure to ultrafine particles from cooking using an electric stove. Science of the Total Environment, 2021, 750, 141334.	8.0	12

#	Article	IF	CITATIONS
55	Daily submicron particle doses received by populations living in different low- and middle-income countries. Environmental Pollution, 2021, 269, 116229.	7.5	11
56	Human exposure to aerosol from indoor gas stove cooking and the resulting nervous system responses. Indoor Air, 2022, 32, .	4.3	11
57	Ultrafine particle apportionment and exposure assessment in respect of linear and point sources. Atmospheric Pollution Research, 2010, 1, 36-43.	3.8	10
58	Particle and Carbon Dioxide Concentration Levels in a Surgical Room Conditioned with a Window/Wall Air-Conditioning System. International Journal of Environmental Research and Public Health, 2020, 17, 1180.	2.6	10
59	A finite element method to evaluate the pressure distortion coefficient in pressure balances. High Temperatures - High Pressures, 1999, 31, 131-143.	0.3	10
60	Electronic cigarettes: age-specific generation-resolved pulmonary doses. Environmental Science and Pollution Research, 2017, 24, 13068-13079.	5.3	8
61	Particle Emissions from Laser Printers: Have They Decreased?. Environmental Science and Technology Letters, 2019, 6, 300-305.	8.7	8
62	Exposure to Submicron Particles and Estimation of the Dose Received by Children in School and Non-School Environments. Atmosphere, 2020, 11, 485.	2.3	8
63	Ultrafine particle transport inside an operating room equipped with turbulent diffusers. Journal of Building Performance Simulation, 2020, 13, 443-455.	2.0	8
64	INDIVIDUAL EXPOSURE OF WOMEN TO FINE AND COARSE PARTICULATE MATTER. Environmental Engineering and Management Journal, 2015, 14, 827-836.	0.6	8
65	Sub-micron particle number emission from residential heating systems: A comparison between conventional and condensing boilers fueled by natural gas and liquid petroleum gas, and pellet stoves. Science of the Total Environment, 2022, 827, 154288.	8.0	8
66	Characterization of Hairdresser Exposure to Airborne Particles during Hair Bleaching. Annals of Occupational Hygiene, 2015, 60, mev063.	1.9	7
67	Environmental Exposure to Ultrafine Particles inside and nearby a Military Airport. Atmosphere, 2016, 7, 138.	2.3	7
68	Ultrafine Particle Distribution and Chemical Composition Assessment during Military Operative Trainings. International Journal of Environmental Research and Public Health, 2017, 14, 579.	2.6	7
69	Occupational Exposure to Fine Particles and Ultrafine Particles in a Steelmaking Foundry. Metals, 2019, 9, 163.	2.3	6
70	Response of the Cardiac Autonomic Control to Exposure to Nanoparticles and Noise: A Cross-Sectional Study of Airport Ground Staff. International Journal of Environmental Research and Public Health, 2021, 18, 2507.	2.6	6
71	The influence of the uncertainty on monitoring stack emissions in a waste-to-energy plant. , 2008, , .		4
72	Influence of methodology on the estimation of the particle surface area dose received by a population in all-day activities. Environmental Pollution, 2020, 266, 115209.	7.5	4

#	Article	IF	CITATIONS
73	Simplified analytical methods for evaluating the pressure distortion coefficient of controlled-clearance pressure balances. High Temperatures - High Pressures, 2003, 35/36, 81-91.	0.3	3
74	Design and metrological characterisation of different pressure balances using the finite-element method. High Temperatures - High Pressures, 2001, 33, 189-198.	0.3	1
75	Formation of cluster mode particles (1–3Ânm) in preschools. Science of the Total Environment, 2021, , 151756.	8.0	1
76	Ultrafine particle size distribution during high velocity impact of high density metals. , 2012, , .		0
77	Physiological Responses to Acute Airborne Particle Exposure during Maximal Aerobic Power. Aerosol and Air Quality Research, 2016, 16, 1922-1930.	2.1	0
78	Air Quality and Health. International Journal of Environmental Research and Public Health, 2018, 15, 2399.	2.6	0
79	Ultrafine particles in key microenvironments in rural and urban areas of Chana. Atmospheric Pollution Research, 2021, 12, 101212.	3.8	0