Darren M Riddy

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7431626/publications.pdf

Version: 2024-02-01

759055 996849 14 466 12 15 citations h-index g-index papers 16 16 16 876 docs citations times ranked citing authors all docs

#	Article	IF	CITATIONS
1	G Protein–Coupled Receptors Targeting Insulin Resistance, Obesity, and Type 2 Diabetes Mellitus. Pharmacological Reviews, 2018, 70, 39-67.	7.1	88
2	New Advances in Targeting the Resolution of Inflammation: Implications for Specialized Pro-Resolving Mediator GPCR Drug Discovery. ACS Pharmacology and Translational Science, 2020, 3, 88-106.	2.5	80
3	Fevipiprant (QAW039), a Slowly Dissociating CRTh2 Antagonist with the Potential for Improved Clinical Efficacy. Molecular Pharmacology, 2016, 89, 593-605.	1.0	56
4	Investigating the molecular mechanisms through which <scp>FTY</scp> 720â€ <scp>P</scp> causes persistent <scp>S1P₁</scp> receptor internalization. British Journal of Pharmacology, 2014, 171, 4797-4807.	2.7	46
5	Discovery of Fevipiprant (NVP-QAW039), a Potent and Selective DP ₂ Receptor Antagonist for Treatment of Asthma. ACS Medicinal Chemistry Letters, 2017, 8, 582-586.	1.3	30
6	Comparative genotypic and phenotypic analysis of human peripheral blood monocytes and surrogate monocyte-like cell lines commonly used in metabolic disease research. PLoS ONE, 2018, 13, e0197177.	1.1	29
7	A prospective study of isolated human hepatocyte function following liver resection for colorectal liver metastases: The effects of prior exposure to chemotherapy. Journal of Hepatology, 2006, 45, 263-270.	1.8	26
8	Acetylcholine Muscarinic M4 Receptors as a Therapeutic Target for Alcohol Use Disorder: Converging Evidence From Humans and Rodents. Biological Psychiatry, 2020, 88, 898-909.	0.7	24
9	Drug-receptor kinetics and sigma-1 receptor affinity differentiate clinically evaluated histamine H3 receptor antagonists. Neuropharmacology, 2019, 144, 244-255.	2.0	22
10	Isoform-Specific Biased Agonism of Histamine H ₃ Receptor Agonists. Molecular Pharmacology, 2017, 91, 87-99.	1.0	21
11	Label-Free Kinetics: Exploiting Functional Hemi-Equilibrium to Derive Rate Constants for Muscarinic Receptor Antagonists. Molecular Pharmacology, 2015, 88, 779-790.	1.0	17
12	Reassessment of the pharmacology of Sphingosineâ€1â€phosphate S1P ₃ receptor ligands using the DiscoveRx PathHunterâ,,¢ and Ca ²⁺ release functional assays. British Journal of Pharmacology, 2012, 167, 868-880.	2.7	13
13	Multipathway In Vitro Pharmacological Characterization of Specialized Proresolving G Protein-Coupled Receptors. Molecular Pharmacology, 2022, 101, 246-256.	1.0	7
14	Deletion of GPR21 improves glucose homeostasis and inhibits the CCL2-CCR2 axis by divergent mechanisms. BMJ Open Diabetes Research and Care, 2021, 9, e002285.	1.2	6