Michael C Andresen

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7431607/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Nucleus Tractus Solitarius—Gateway to Neural Circulatory Control. Annual Review of Physiology, 1994, 56, 93-116.	5.6	404
2	Reliability of Monosynaptic Sensory Transmission in Brain Stem Neurons In Vitro. Journal of Neurophysiology, 2001, 85, 2213-2223.	0.9	215
3	Purinergic and Vanilloid Receptor Activation Releases Glutamate from Separate Cranial Afferent Terminals in Nucleus Tractus Solitarius. Journal of Neuroscience, 2004, 24, 4709-4717.	1.7	161
4	Primary Afferent Activation of Thermosensitive TRPV1 Triggers Asynchronous Glutamate Release at Central Neurons. Neuron, 2010, 65, 657-669.	3.8	161
5	Proopiomelanocortin Neurons in Nucleus Tractus Solitarius Are Activated by Visceral Afferents: Regulation by Cholecystokinin and Opioids. Journal of Neuroscience, 2005, 25, 3578-3585.	1.7	160
6	Vanilloid Receptors Presynaptically Modulate Cranial Visceral Afferent Synaptic Transmission in Nucleus Tractus Solitarius. Journal of Neuroscience, 2002, 22, 8222-8229.	1.7	127
7	Cranial Visceral Afferent Pathways through the Nucleus of the Solitary Tract to Caudal Ventrolateral Medulla or Paraventricular Hypothalamus: Target-Specific Synaptic Reliability and Convergence Patterns. Journal of Neuroscience, 2006, 26, 11893-11902.	1.7	126
8	Oxytocin Enhances Cranial Visceral Afferent Synaptic Transmission to the Solitary Tract Nucleus. Journal of Neuroscience, 2008, 28, 11731-11740.	1.7	118
9	Differential Distribution and Function of Hyperpolarization-Activated Channels in Sensory Neurons and Mechanosensitive Fibers. Journal of Neuroscience, 2004, 24, 3335-3343.	1.7	114
10	Visceral Afferents Directly Activate Catecholamine Neurons in the Solitary Tract Nucleus. Journal of Neuroscience, 2007, 27, 13292-13302.	1.7	109
11	Vasopressin Inhibits Glutamate Release via Two Distinct Modes in the Brainstem. Journal of Neuroscience, 2006, 26, 6131-6142.	1.7	98
12	Localization and retention in vitro of fluorescently labeled aortic baroreceptor terminals on neurons from the nucleus tractus solitarius. Brain Research, 1992, 581, 339-343.	1.1	96
13	Thermally Active TRPV1 Tonically Drives Central Spontaneous Glutamate Release. Journal of Neuroscience, 2010, 30, 14470-14475.	1.7	96
14	Organization and Properties of GABAergic Neurons in Solitary Tract Nucleus (NTS). Journal of Neurophysiology, 2008, 99, 1712-1722.	0.9	87
15	ARTERIAL BARORECEPTOR RESETTING: CONTRIBUTIONS OF CHRONIC AND ACUTE PROCESSES. Clinical and Experimental Pharmacology and Physiology, 1989, 16, 19-30.	0.9	76
16	Differential frequency-dependent reflex integration of myelinated and nonmyelinated rat aortic baroreceptors. American Journal of Physiology - Heart and Circulatory Physiology, 1998, 275, H632-H640.	1.5	67
17	Vanilloid-Sensitive Afferents Activate Neurons with Prominent A-Type Potassium Currents in Nucleus Tractus Solitarius. Journal of Neuroscience, 2002, 22, 8230-8237.	1.7	58
18	Strategies for cellular identification in nucleus tractus solitarius slices. Journal of Neuroscience Methods, 2004, 137, 37-48	1.3	57

#	Article	IF	CITATIONS
19	Cranial Afferent Glutamate Heterosynaptically Modulates GABA Release onto Second-Order Neurons via Distinctly Segregated Metabotropic Glutamate Receptors. Journal of Neuroscience, 2004, 24, 9332-9340.	1.7	56
20	Cannabinoid 1 and Transient Receptor Potential Vanilloid 1 Receptors Discretely Modulate Evoked Glutamate Separately from Spontaneous Glutamate Transmission. Journal of Neuroscience, 2014, 34, 8324-8332.	1.7	54
21	Propofol enhances both tonic and phasic inhibitory currents in second-order neurons of the solitary tract nucleus (NTS). Neuropharmacology, 2008, 54, 552-563.	2.0	53
22	Graded and dynamic reflex summation of myelinated and unmyelinated rat aortic baroreceptors. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 1999, 277, R748-R756.	0.9	52
23	Cellular Mechanisms of Baroreceptor Integration at the Nucleus Tractus Solitarius. Annals of the New York Academy of Sciences, 2001, 940, 132-141.	1.8	51
24	Sensory Afferent Neurotransmission in Caudal Nucleus Tractus Solitarius—Common Denominators. Chemical Senses, 1996, 21, 387-395.	1.1	48
25	Respiratory sinus arrhythmia in freely moving and anesthetized rats. Journal of Applied Physiology, 2004, 97, 1431-1436.	1.2	47
26	Angiotensin potentiates excitatory sensory synaptic transmission to medial solitary tract nucleus neurons. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2003, 284, R1340-R1353.	0.9	45
27	TRPV1 Marks Synaptic Segregation of Multiple Convergent Afferents at the Rat Medial Solitary Tract Nucleus. PLoS ONE, 2011, 6, e25015.	1.1	45
28	Comparison of baroreceptive to other afferent synaptic transmission to the medial solitary tract nucleus. American Journal of Physiology - Heart and Circulatory Physiology, 2008, 295, H2032-H2042.	1.5	43
29	Calcium regulation of spontaneous and asynchronous neurotransmitter release. Cell Calcium, 2012, 52, 226-233.	1.1	41
30	Convergence of Cranial Visceral Afferents within the Solitary Tract Nucleus. Journal of Neuroscience, 2009, 29, 12886-12895.	1.7	40
31	Isoflurane Depresses Baroreflex Control of Heart Rate in Decerebrate Rats. Anesthesiology, 2002, 96, 1214-1222.	1.3	39
32	A-type potassium channels differentially tune afferent pathways from rat solitary tract nucleus to caudal ventrolateral medulla or paraventricular hypothalamus. Journal of Physiology, 2007, 582, 613-628.	1.3	39
33	The unsilent majority–TRPV1 drives "spontaneous―transmission of unmyelinated primary afferents within cardiorespiratory NTS. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2012, 303, R1207-R1216.	0.9	37
34	Pentobarbital Enhances GABAergic Neurotransmission to Cardiac Parasympathetic Neurons, Which Is Prevented by Expression of GABAAε Subunit. Anesthesiology, 2002, 97, 717-724.	1.3	35
35	Ketamine Differentially Blocks Sensory Afferent Synaptic Transmission in Medial Nucleus Tractus Solitarius (mNTS). Anesthesiology, 2003, 98, 121-132.	1.3	34
36	Ketamine Inhibits Sodium Currents in Identified Cardiac Parasympathetic Neurons in Nucleus Ambiguus. Anesthesiology, 2002, 96, 659-666.	1.3	33

#	Article	IF	CITATIONS
37	Propofol Modulates γ-Aminobutyric Acid–mediated Inhibitory Neurotransmission to Cardiac Vagal Neurons in the Nucleus Ambiguus. Anesthesiology, 2004, 100, 1198-1205.	1.3	33
38	Localization of TRPV1 and P2X3 in unmyelinated and myelinated vagal afferents in the rat. Journal of Chemical Neuroanatomy, 2016, 72, 1-7.	1.0	31
39	Presynaptic actions of propofol enhance inhibitory synaptic transmission in isolated solitary tract nucleus neurons. Brain Research, 2009, 1286, 75-83.	1.1	27
40	The Nucleus of the Solitary Tract: Processing Information from Viscerosensory Afferents. , 2011, , 23-46.		26
41	GABA _B -mediated inhibition of multiple modes of glutamate release in the nucleus of the solitary tract. Journal of Neurophysiology, 2011, 106, 1833-1840.	0.9	25
42	Missing pieces of the Piezo1/Piezo2 baroreceptor hypothesis: an autonomic perspective. Journal of Neurophysiology, 2019, 122, 1207-1212.	0.9	25
43	Ketamine Inhibits Presynaptic and Postsynaptic Nicotinic Excitation of Identified Cardiac Parasympathetic Neurons in Nucleus Ambiguus. Anesthesiology, 2002, 96, 667-674.	1.3	24
44	Distinct Calcium Sources Support Multiple Modes of Synaptic Release from Cranial Sensory Afferents. Journal of Neuroscience, 2016, 36, 8957-8966.	1.7	23
45	Isoflurane Differentially Modulates Inhibitory and Excitatory Synaptic Transmission to the Solitary Tract Nucleus. Anesthesiology, 2008, 108, 675-683.	1.3	21
46	Heterosynaptic crosstalk: GABA-glutamate metabotropic receptors interactively control glutamate release in solitary tract nucleus. Neuroscience, 2011, 174, 1-9.	1.1	21
47	Peptide and Lipid Modulation of Glutamatergic Afferent Synaptic Transmission in the Solitary Tract Nucleus. Frontiers in Neuroscience, 2012, 6, 191.	1.4	21
48	Cervical vagus nerve stimulation augments spontaneous discharge in second- and higher-order sensory neurons in the rat nucleus of the solitary tract. American Journal of Physiology - Heart and Circulatory Physiology, 2017, 313, H354-H367.	1.5	21
49	Independent transmission of convergent visceral primary afferents in the solitary tract nucleus. Journal of Neurophysiology, 2013, 109, 507-517.	0.9	20
50	Sustained hypertension increases the density of AMPA receptor subunit, GluR1, in baroreceptive regions of the nucleus tractus solitarii of the rat. Brain Research, 2008, 1187, 125-136.	1.1	18
51	Activation of TRPV1 in nucleus tractus solitarius reduces brown adipose tissue thermogenesis, arterial pressure, and heart rate. American Journal of Physiology - Regulatory Integrative and Comparative Physiology, 2018, 315, R134-R143.	0.9	18
52	Vanilloids selectively sensitize thermal glutamate release from TRPV1 expressing solitary tract afferents. Neuropharmacology, 2016, 101, 401-411.	2.0	17
53	Capsaicin- resistant arterial baroreceptors. Journal of Negative Results in BioMedicine, 2006, 5, 6.	1.4	16
54	Vagus nerve stimulation activates nucleus of solitary tract neurons via supramedullary pathways. Journal of Physiology, 2021, 599, 5261-5279.	1.3	15

#	Article	IF	CITATIONS
55	Optical tracking of phenotypically diverse individual synapses on solitary tract nucleus neurons. Brain Research, 2010, 1312, 54-66.	1.1	14
56	Lowâ€fidelity GABA transmission within a dense excitatory network of the solitary tract nucleus. Journal of Physiology, 2012, 590, 5677-5689.	1.3	14
57	External QX-314 inhibits evoked cranial primary afferent synaptic transmission independent of TRPV1. Journal of Neurophysiology, 2014, 112, 2697-2706.	0.9	14
58	Dedicated Câ€fibre viscerosensory pathways to central nucleus of the amygdala. Journal of Physiology, 2017, 595, 901-917.	1.3	14
59	Paired Assessment of Volatile Anesthetic Concentrations with Synaptic Actions Recorded In Vitro. PLoS ONE, 2008, 3, e3372.	1.1	13
60	Opioids inhibit visceral afferent activation of catecholamine neurons in the solitary tract nucleus. Neuroscience, 2012, 222, 181-190.	1.1	13
61	Physiological temperatures drive glutamate release onto trigeminal superficial dorsal horn neurons. Journal of Neurophysiology, 2014, 111, 2222-2231.	0.9	12
62	Dedicated C-fiber vagal sensory afferent pathways to the paraventricular nucleus of the hypothalamus. Brain Research, 2021, 1769, 147625.	1.1	11
63	Clinically Relevant Concentrations of Bupivacaine Inhibit Rat Aortic Baroreceptors. Anesthesia and Analgesia, 1994, 78, 501???506.	1.1	10
64	Temperature Differentially Facilitates Spontaneous but Not Evoked Glutamate Release from Cranial Visceral Primary Afferents. PLoS ONE, 2015, 10, e0127764.	1.1	9
65	Ketamine Inhibits Inspiratory-evoked γ-Aminobutyric Acid and Glycine Neurotransmission to Cardiac Vagal Neurons in the Nucleus Ambiguus. Anesthesiology, 2005, 103, 353-359.	1.3	8
66	Understanding diverse TRPV1 signaling – an update. F1000Research, 2019, 8, 1978.	0.8	8
67	Cardiovascular Integration in the Nucleus of the Solitary Tract. , 2004, , 59-80.		7
68	Cellular basis of the photoresponse of an extraretinal photoreceptor. Experientia, 1982, 38, 1001-1006.	1.2	6
69	Contribution of potassium channels to the discharge properties of rat aortic baroreceptor sensory endings. Brain Research, 1994, 665, 115-122.	1.1	5
70	Cellular Heterogeneity Within the Solitary Tract Nucleus and Visceral Afferent Processing—Electrophysiological Approaches to Discerning Pathway Performance. Tzu Chi Medical Journal, 2007, 19, 181-185.	0.4	5
71	TRPV1, Hypertension, and Cardiovascular Regulation. Cell Metabolism, 2010, 12, 421.	7.2	5
72	GABAB restrains release from singly-evoked GABA terminals. Neuroscience, 2011, 193, 54-62.	1.1	5

#	Article	IF	CITATIONS
73	Untangling Peripheral Sympathetic Neurocircuits. Frontiers in Cardiovascular Medicine, 2022, 9, 842656.	1.1	4
74	5-HT3R–sourced calcium enhances glutamate release from a distinct vesicle pool. Brain Research, 2019, 1721, 146346.	1.1	3
75	Dynasore blocks evoked release while augmenting spontaneous synaptic transmission from primary visceral afferents. PLoS ONE, 2017, 12, e0174915.	1.1	2
76	Distinct Calcium Sources Define Compartmentalized Synaptic Signaling Domains. Neuroscientist, 2019, 25, 408-419.	2.6	1
77	Simulation of a photosensitive Aplysia neuron. Annals of Biomedical Engineering, 1981, 9, 227-241.	1.3	0
78	Oxytocin enhances glutamatergic afferent transmission and produces an inward current in second order medial solitary tract neurons. FASEB Journal, 2008, 22, 1171.8.	0.2	0
79	Focal synaptic recruitment to second order solitary tract nucleus neurons with minimal electrical shocks. FASEB Journal, 2010, 24, 810.5.	0.2	0
80	Dietâ€induced obesity differentially affects baroreflexâ€mediated sympathetic and parasympathetic outflow. FASEB Journal, 2010, 24, 1049.5.	0.2	0
81	GABA B receptors depress glutamate release at Câ€fiber afferent synapses in the nucleus of the solitary tract (NTS). FASEB Journal, 2010, 24, 624.4.	0.2	0
82	Prolonged TRPV1 activation increases frequency and amplitudes of glutamatergic events in NTS neurons. FASEB Journal, 2012, 26, 701.6.	0.2	0
83	Lack of interaction of coâ€existing TRPV1 and CB1 receptors indicates differential control of separate basal and synchronous glutamate release mechanisms in the solitary tract nucleus. FASEB Journal, 2013, 27, 1118.17.	0.2	0
84	TRPV1 in Central Cardiovascular Control. , 2007, , 93-109.		0
85	Evidence for Cholinergic Collateral Projections between Sympathetic Neurons in the Murine Stellate Ganglia. FASEB Journal, 2022, 36, .	0.2	Ο