
Wouter Hoogkamer

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7431560/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	A Comparison of the Energetic Cost of Running in Marathon Racing Shoes. Sports Medicine, 2018, 48, 1009-1019.	3.1	225
2	Altered Running Economy Directly Translates to Altered Distance-Running Performance. Medicine and Science in Sports and Exercise, 2016, 48, 2175-2180.	0.2	137
3	The Biomechanics of Competitive Male Runners in Three Marathon Racing Shoes: A Randomized Crossover Study. Sports Medicine, 2019, 49, 133-143.	3.1	94
4	Steps Forward in Understanding Backward Gait. Exercise and Sport Sciences Reviews, 2014, 42, 23-29.	1.6	77
5	How Biomechanical Improvements in Running Economy Could Break the 2-hour Marathon Barrier. Sports Medicine, 2017, 47, 1739-1750.	3.1	76
6	Extrapolating Metabolic Savings in Running: Implications for Performance Predictions. Frontiers in Physiology, 2019, 10, 79.	1.3	66
7	Novice runners show greater changes in kinematics with fatigue compared with competitive runners. Sports Biomechanics, 2018, 17, 350-360.	0.8	54
8	Energetics and Biomechanics of Running Footwear with Increased Longitudinal Bending Stiffness: A Narrative Review. Sports Medicine, 2021, 51, 873-894.	3.1	53
9	Toward new sensitive measures to evaluate gait stability in focal cerebellar lesion patients. Gait and Posture, 2015, 41, 592-596.	0.6	35
10	Effects of aging and dual tasking on step adjustments to perturbations in visually cued walking. Experimental Brain Research, 2015, 233, 3467-3474.	0.7	35
11	Stride length asymmetry in split-belt locomotion. Gait and Posture, 2014, 39, 652-654.	0.6	33
12	Response inhibition during avoidance of virtual obstacles while walking. Gait and Posture, 2014, 39, 641-644.	0.6	32
13	Regional volumes in brain stem and cerebellum are associated with postural impairments in young brainâ€injured patients. Human Brain Mapping, 2015, 36, 4897-4909.	1.9	31
14	Quick foot placement adjustments during gait: direction matters. Experimental Brain Research, 2015, 233, 3349-3357.	0.7	29
15	Gait asymmetry during early split-belt walking is related to perception of belt speed difference. Journal of Neurophysiology, 2015, 114, 1705-1712.	0.9	27
16	Adaptation and aftereffects of split-belt walking in cerebellar lesion patients. Journal of Neurophysiology, 2015, 114, 1693-1704.	0.9	27
17	Longitudinal bending stiffness does not affect running economy in Nike Vaporfly Shoes. Journal of Sport and Health Science, 2022, 11, 285-292.	3.3	26
18	Gait and functionality of individuals with visual impairment who participate in sports. Gait and Posture, 2018, 62, 355-358.	0.6	24

Wouter Hoogkamer

#	Article	IF	CITATIONS
19	Effect of habitual foot-strike pattern on the gastrocnemius medialis muscle-tendon interaction and muscle force production during running. Journal of Applied Physiology, 2019, 126, 708-716.	1.2	24
20	Modeling the Benefits of Cooperative Drafting: Is There an Optimal Strategy to Facilitate a Sub-2-Hour Marathon Performance?. Sports Medicine, 2018, 48, 2859-2867.	3.1	23
21	Selective bilateral activation of leg muscles after cutaneous nerve stimulation during backward walking. Journal of Neurophysiology, 2012, 108, 1933-1941.	0.9	21
22	Applying the cost of generating force hypothesis to uphill running. PeerJ, 2014, 2, e482.	0.9	19
23	More isn't always better. Footwear Science, 2020, 12, 75-77.	0.8	18
24	Freezing-related perception deficits of asymmetrical walking in Parkinson's disease. Neuroscience, 2017, 364, 122-129.	1.1	16
25	Different neural substrates for precision stepping and fast online step adjustments in youth. Brain Structure and Function, 2018, 223, 2039-2053.	1.2	15
26	Can We Quantify the Benefits of "Super Spikes―in Track Running?. Sports Medicine, 2022, 52, 1211-1218.	3.1	15
27	Perception of Gait Asymmetry During Split-Belt Walking. Exercise and Sport Sciences Reviews, 2017, 45, 34-40.	1.6	13
28	Changing Stride Frequency Alters Average Joint Power and Power Distributions during Ground Contact and Leg Swing in Running. Medicine and Science in Sports and Exercise, 2021, 53, 2111-2118.	0.2	13
29	Metabolic cost of level, uphill, and downhill running in highly cushioned shoes with carbon-fiber plates. Journal of Sport and Health Science, 2022, 11, 303-308.	3.3	13
30	Coordinating arms and legs on a hybrid rehabilitation tricycle: the metabolic benefit of asymmetrical compared to symmetrical arm movements. European Journal of Applied Physiology, 2014, 114, 743-750.	1.2	12
31	Reflecting on Eliud Kipchoge's Marathon World Record: An Update to Our Model of Cooperative Drafting and Its Potential for a Sub-2-Hour Performance. Sports Medicine, 2019, 49, 167-170.	3.1	12
32	Commentaries on Viewpoint: Physiology and fast marathons. Journal of Applied Physiology, 2020, 128, 1069-1085.	1.2	12
33	Effects of course design (curves and elevation undulations) on marathon running performance: a comparison of Breaking 2 in Monza and the INEOS 1:59 Challenge in Vienna. Journal of Sports Sciences, 2021, 39, 754-759.	1.0	11
34	Triceps surae muscle force potential and force demand shift with altering stride frequency in running. Scandinavian Journal of Medicine and Science in Sports, 0, , .	1.3	10
35	Sensorimotor recalibration during split-belt walking: task-specific and multisensory?. Journal of Neurophysiology, 2016, 116, 1539-1541.	0.9	9
36	Cutaneous reflex modulation and self-induced reflex attenuation in cerebellar patients. Journal of Neurophysiology, 2015, 113, 915-924.	0.9	7

Wouter Hoogkamer

#	Article	IF	CITATIONS
37	Quick foot placement adjustments during gait are less accurate in individuals with focal cerebellar lesions. Gait and Posture, 2017, 58, 390-393.	0.6	7
38	Habitual foot strike pattern does not affect simulated Triceps Surae muscle metabolic energy consumption during running. Journal of Experimental Biology, 2019, 222, .	0.8	6
39	Gait Parameters Affecting the Perception Threshold of Locomotor Symmetry: Comment on Lauzière, et al. (2014). Perceptual and Motor Skills, 2014, 119, 474-477.	0.6	5
40	Is there "arthrogenic inhibition―of cutaneous reflexes in subjects with functional ankle instability?. Clinical Neurophysiology, 2013, 124, 1264-1266.	0.7	4
41	New Running Shoe Reduces the Energetic Cost of Running. Medicine and Science in Sports and Exercise, 2017, 49, 195.	0.2	3
42	The metabolic cost of emulated aerodynamic drag forces in marathon running. Journal of Applied Physiology, 0, , .	1.2	3
43	Author's Reply to Candau et al.: Comment on: "How Biomechanical Improvements in Running Economy Could Break the 2-Hour Marathon Barrier― Sports Medicine, 2017, 47, 2405-2407.	3.1	2
44	Is Action-Perception Coupling Improved with Delay in Patients with Focal Cerebellar Lesions?. Journal of Neuroscience, 2014, 34, 11175-11176.	1.7	1
45	Changing relative crank angle increases the metabolic cost of leg cycling. European Journal of Applied Physiology, 2017, 117, 2021-2027.	1.2	0
46	Measuring Mechanical and Metabolic Power during Uphill Treadmill Cycling. Medicine and Science in Sports and Exercise, 2017, 49, 376-377.	0.2	0
47	Front Suspension Does Not Increase Mechanical or Metabolic Power Requirements during Uphill Bicycling. Medicine and Science in Sports and Exercise, 2017, 49, 375.	0.2	Ο