
Tomoki Todo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7431454/publications.pdf Version: 2024-02-01

TOMORI TODO

#	Article	IF	CITATIONS
1	PRRX1 induced by BMP signaling decreases tumorigenesis by epigenetically regulating gliomaâ€initiating cell properties via DNA methyltransferase 3A. Molecular Oncology, 2022, 16, 269-288.	4.6	5
2	SMURF2 phosphorylation at Thr249 modifies glioma stemness and tumorigenicity by regulating TGF-Î ² receptor stability. Communications Biology, 2022, 5, 22.	4.4	8
3	Efficacy of a third-generation oncolytic herpes simplex virus in refractory soft tissue sarcoma xenograft models. Molecular Therapy - Oncolytics, 2022, 25, 225-235.	4.4	1
4	Therapeutic advantage of targeting lysosomal membrane integrity supported by lysophagy in malignant glioma. Cancer Science, 2022, 113, 2716-2726.	3.9	6
5	Oncolytic Virus Therapy with HSV-1 for Hematological Malignancies. Molecular Therapy, 2021, 29, 762-774.	8.2	22
6	Oncolytic herpes simplex virus type 1 (HSVâ€1) in combination with lenalidomide for plasma cell neoplasms. British Journal of Haematology, 2021, 192, 343-353.	2.5	15
7	Oncolytic virotherapy with SOCS3 enhances viral replicative potency and oncolysis for gastric cancer. Oncotarget, 2021, 12, 344-354.	1.8	7
8	CDK8 maintains stemness and tumorigenicity of glioma stem cells by regulating the c-MYC pathway. Oncogene, 2021, 40, 2803-2815.	5.9	33
9	Oncolytic virotherapy with human telomerase reverse transcriptase promoter regulation enhances cytotoxic effects against gastric cancer. Oncology Letters, 2021, 21, 490.	1.8	6
10	Tripleâ€mutated oncolytic herpes virus for treating both fast†and slowâ€growing tumors. Cancer Science, 2021, 112, 3293-3301.	3.9	13
11	Oncolytic herpes virus G47Δ works synergistically with CTLA-4 inhibition via dynamic intratumoral immune modulation. Molecular Therapy - Oncolytics, 2021, 22, 129-142.	4.4	37
12	Oncolytic herpes virus G47Δ injected into tongue cancer swiftly traffics in lymphatics and suppresses metastasis. Molecular Therapy - Oncolytics, 2021, 22, 388-398.	4.4	14
13	Efficacy and safety of a third-generation oncolytic herpes virus G47Δ in models of human esophageal carcinoma. Molecular Therapy - Oncolytics, 2021, 23, 402-411.	4.4	17
14	Efficacy of a Third-Generation Oncolytic Herpes Virus G47Δ in Advanced Stage Models of Human Gastric Cancer. Molecular Therapy - Oncolytics, 2020, 17, 205-215.	4.4	48
15	Neoadjuvant Use of Oncolytic Herpes Virus G47î" Enhances the Antitumor Efficacy of Radiofrequency Ablation. Molecular Therapy - Oncolytics, 2020, 18, 535-545.	4.4	23
16	Tyrosine kinase Eph receptor A6 sensitizes gliomaâ€initiating cells towards bone morphogenetic proteinâ€induced apoptosis. Cancer Science, 2019, 110, 3486-3496.	3.9	13
17	Foxr2 promotes formation of CNS-embryonal tumors in a Trp53-deficient background. Neuro-Oncology, 2019, 21, 993-1004.	1.2	13
18	Aberrant Active cis-Regulatory Elements Associated with Downregulation of RET Finger Protein Overcome Chemoresistance in Glioblastoma. Cell Reports, 2019, 26, 2274-2281.e5.	6.4	8

Томокі Торо

#	Article	IF	CITATIONS
19	ATIM-14. RESULTS OF PHASE II CLINICAL TRIAL OF ONCOLYTIC HERPES VIRUS G47Δ IN PATIENTS WITH GLIOBLASTOMA. Neuro-Oncology, 2019, 21, vi4-vi4.	1.2	37
20	Oncolytic virus therapy in Japan: progress in clinical trials and future perspectives. Japanese Journal of Clinical Oncology, 2019, 49, 201-209.	1.3	55
21	Efficacy of a third-generation oncolytic herpes simplex virus in neuroendocrine tumor xenograft models. Oncotarget, 2019, 10, 7132-7141.	1.8	13
22	Enhancement of the efficacy of radiofrequency ablation by neoadjuvant oncolytic virus therapy via antitumor immunity and the booster effect of immune checkpoint inhibitors Journal of Clinical Oncology, 2019, 37, 253-253.	1.6	1
23	Oncolytic Virus Therapy with HSV-1 for Hematologic Malignancies. Blood, 2019, 134, 3242-3242.	1.4	0
24	Thirdâ€generation oncolytic herpes simplex virus inhibits the growth of liver tumors in mice. Cancer Science, 2018, 109, 600-610.	3.9	24
25	Identification of a novel fusion gene <i>HMGA2â€EGFR</i> in glioblastoma. International Journal of Cancer, 2018, 142, 1627-1639.	5.1	12
26	<scp>SIRT</scp> 2â€mediated inactivation of p73 is required for glioblastoma tumorigenicity. EMBO Reports, 2018, 19, .	4.5	35
27	Autophagy inhibition synergizes with calcium mobilization to achieve efficient therapy of malignant gliomas. Cancer Science, 2018, 109, 2497-2508.	3.9	16
28	The role of the SWI/SNF chromatin remodeling complex in maintaining the stemness of glioma initiating cells. Scientific Reports, 2017, 7, 889.	3.3	32
29	Current status of clinical trials assessing oncolytic virus therapy for urological cancers. International Journal of Urology, 2017, 24, 342-351.	1.0	38
30	Significance of perivascular tumour cells defined by CD109 expression in progression of glioma. Journal of Pathology, 2017, 243, 468-480.	4.5	36
31	MiR-199a Inhibits Secondary Envelopment of Herpes Simplex Virus-1 Through the Downregulation of Cdc42-specific GTPase Activating Protein Localized in Golgi Apparatus. Scientific Reports, 2017, 7, 6650.	3.3	6
32	Identification of antipsychotic drug fluspirilene as a potential anti-glioma stem cell drug. Oncotarget, 2017, 8, 111728-111741.	1.8	29
33	Oncolytic Virus Therapy for Malignant Glioma using G47Δ. Japanese Journal of Neurosurgery, 2016, 25, 973-978.	0.0	0
34	Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Science, 2016, 107, 1373-1379.	3.9	527
35	Therapeutic Strategy for Targeting Aggressive Malignant Gliomas by Disrupting Their Energy Balance. Journal of Biological Chemistry, 2016, 291, 21496-21509.	3.4	31
36	Identification of RNA-Binding Protein LARP4B as a Tumor Suppressor in Glioma. Cancer Research, 2016, 76, 2254-2264.	0.9	41

Томокі Торо

#	Article	IF	CITATIONS
37	MICRO RNA BASED STRATEGY FOR ENHANCING THE EFFECT OF ONCOLYTIC HSV-1 VIRUS THERAPY. Neuro-Oncology, 2014, 16, iii37-iii37.	1.2	0
38	A case of radiation-induced osteosarcoma treated effectively by boron neutron capture therapy. Radiation Oncology, 2014, 9, 237.	2.7	25
39	PCDH10 is required for the tumorigenicity of glioblastoma cells. Biochemical and Biophysical Research Communications, 2014, 444, 13-18.	2.1	12
40	An armed oncolytic herpes simplex virus expressing thrombospondinâ€1 has an enhanced <i>in vivo</i> antitumor effect against human gastric cancer. International Journal of Cancer, 2013, 132, 485-494.	5.1	39
41	Active Immunotherapy Oncolytic Virus Therapy Using HSV-1. Advances in Experimental Medicine and Biology, 2012, 746, 178-186.	1.6	27
42	Extended field stereotactic radiosurgery for recurrent glioblastoma. Cancer, 2012, 118, 4193-4200.	4.1	45
43	Glioma-initiating Cells Retain Their Tumorigenicity through Integration of the Sox Axis and Oct4 Protein. Journal of Biological Chemistry, 2011, 286, 41434-41441.	3.4	129
44	CLINICAL DEVELOPMENT OF A THIRD-GENERATION ONCOLYTIC HSV-1 (G47Δ) FOR MALIGNANT GLIOMA. Gene Therapy and Regulation, 2010, 05, 101-111.	0.3	8
45	Long-term control of disseminated pleomorphic xanthoastrocytoma with anaplastic features by means of stereotactic irradiation. Neuro-Oncology, 2009, 11, 446-451.	1.2	49
46	Autocrine TGF-Î ² Signaling Maintains Tumorigenicity of Glioma-Initiating Cells through Sry-Related HMG-Box Factors. Cell Stem Cell, 2009, 5, 504-514.	11.1	503
47	"Armed―oncolytic herpes simplex viruses for brain tumor therapy. Cell Adhesion and Migration, 2008, 2, 208-213.	2.7	23
48	Oncolytic virus therapy using genetically engineered herpes simplex viruses. Frontiers in Bioscience - Landmark, 2008, 13, 2060.	3.0	66
49	Preoperative Mapping of Language-related Functions using Functional MRI and Magnetoencephalography(<special issue=""> Functional Neurophysiological Monitoring for) Tj ETQq1 1 0.78</special>	84 010 4 rgB	T Øverlock
50	Clinical Practice and Perspectives in Neurosurgery using Multi-modality Functional Imaging and Monitoring. Japanese Journal of Neurosurgery, 2007, 16, 206-214.	0.0	0
51	Triple Combination of Oncolytic Herpes Simplex Virus-1 Vectors Armed with Interleukin-12, Interleukin-18, or Soluble B7-1 Results in Enhanced Antitumor Efficacy. Clinical Cancer Research, 2006, 12, 643-652.	7.0	103
52	Dominant-Negative Fibroblast Growth Factor Receptor Expression Enhances Antitumoral Potency of Oncolytic Herpes Simplex Virus in Neural Tumors. Clinical Cancer Research, 2006, 12, 6791-6799.	7.0	72
53	Oncolytic HSV Armed with Platelet Factor 4, an Antiangiogenic Agent, Shows Enhanced Efficacy. Molecular Therapy, 2006, 14, 789-797.	8.2	77
54	Brain Tumor Therapy using Oncolytic Herpes Simplex Virus Vectors. Japanese Journal of Neurosurgery, 2006, 15, 97-104.	0.0	0

Томокі Торо

#	Article	IF	CITATIONS
55	Triple Gene-Deleted Oncolytic Herpes Simplex Virus Vector Double-Armed with Interleukin 18 and Soluble B7-1 Constructed by Bacterial Artificial Chromosome–Mediated System. Cancer Research, 2005, 65, 10663-10668.	0.9	104
56	Oncolytic Herpes Simplex Virus Vector G47î" in Combination with Androgen Ablation for the Treatment of Human Prostate Adenocarcinoma. Clinical Cancer Research, 2005, 11, 7886-7890.	7.0	57
57	Development of Oncolytic Replication-Competent Herpes Simplex Virus Vectors. , 2005, , 199-210.		2
58	Oncolytic Virus Therapy Using Genetically Engineered Herpes Simplex Viruses. Human Cell, 2002, 15, 151-159.	2.7	18
59	lonizing Radiation Does Not Alter the Antitumor Activity of Herpes Simplex Virus Vector G207 in Subcutaneous Tumor Models of Human and Murine Prostate Cancer. Neoplasia, 2001, 3, 451-456.	5.3	48
60	Therapeutic Efficacy of G207, a Conditionally Replicating Herpes Simplex Virus Type 1 Mutant, for Gallbladder Carcinoma in Immunocompetent Hamsters. Molecular Therapy, 2001, 3, 431-437.	8.2	44
61	Preclinical Safety Evaluation of G207, a Replication-Competent Herpes Simplex Virus Type 1, Inoculated Intraprostatically in Mice and Nonhuman Primates. Human Gene Therapy, 2001, 12, 999-1010.	2.7	67
62	Evaluation of ganciclovir-mediated enhancement of the antitumoral effect in oncolytic, multimutated herpes simplex virus type 1 (G207) therapy of brain tumors. Cancer Gene Therapy, 2000, 7, 939-946.	4.6	51
63	Viral Shedding and Biodistribution of G207, a Multimutated, Conditionally Replicating Herpes Simplex Virus Type 1, after Intracerebral Inoculation in Aotus. Molecular Therapy, 2000, 2, 588-595.	8.2	90
64	Corticosteroid Administration Does Not Affect Viral Oncolytic Activity, but Inhibits Antitumor Immunity in ReplicationCompetent Herpes Simplex Virus Tumor Therapy. Human Gene Therapy, 1999, 10, 2869-2878.	2.7	50
65	Replication-Competent Herpes Simplex Virus Vector G207 and Cisplatin Combination Therapy for Head and Neck Squamous Cell Carcinoma. Neoplasia, 1999, 1, 162-169.	5.3	104
66	Systemic Antitumor Immunity in Experimental Brain Tumor Therapy Using a Multimutated, Replication-Competent Herpes Simplex Virus. Human Gene Therapy, 1999, 10, 2741-2755.	2.7	193
67	Attenuated, Replication-Competent Herpes Simplex Virus Type 1 Mutant G207: Safety Evaluation of Intracerebral Injection in Nonhuman Primates. Journal of Virology, 1999, 73, 6319-6326.	3.4	171