Tomoki Todo

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7431454/publications.pdf

Version: 2024-02-01

172457 144013 3,402 67 29 57 citations h-index g-index papers 70 70 70 3791 citing authors docs citations times ranked all docs

#	Article	IF	CITATIONS
1	Oncolytic virus therapy: A new era of cancer treatment at dawn. Cancer Science, 2016, 107, 1373-1379.	3.9	527
2	Autocrine TGF- \hat{l}^2 Signaling Maintains Tumorigenicity of Glioma-Initiating Cells through Sry-Related HMG-Box Factors. Cell Stem Cell, 2009, 5, 504-514.	11.1	503
3	Systemic Antitumor Immunity in Experimental Brain Tumor Therapy Using a Multimutated, Replication-Competent Herpes Simplex Virus. Human Gene Therapy, 1999, 10, 2741-2755.	2.7	193
4	Attenuated, Replication-Competent Herpes Simplex Virus Type 1 Mutant G207: Safety Evaluation of Intracerebral Injection in Nonhuman Primates. Journal of Virology, 1999, 73, 6319-6326.	3.4	171
5	Glioma-initiating Cells Retain Their Tumorigenicity through Integration of the Sox Axis and Oct4 Protein. Journal of Biological Chemistry, 2011, 286, 41434-41441.	3.4	129
6	Replication-Competent Herpes Simplex Virus Vector G207 and Cisplatin Combination Therapy for Head and Neck Squamous Cell Carcinoma. Neoplasia, 1999, 1, 162-169.	5.3	104
7	Triple Gene-Deleted Oncolytic Herpes Simplex Virus Vector Double-Armed with Interleukin 18 and Soluble B7-1 Constructed by Bacterial Artificial Chromosome–Mediated System. Cancer Research, 2005, 65, 10663-10668.	0.9	104
8	Triple Combination of Oncolytic Herpes Simplex Virus-1 Vectors Armed with Interleukin-12, Interleukin-18, or Soluble B7-1 Results in Enhanced Antitumor Efficacy. Clinical Cancer Research, 2006, 12, 643-652.	7.0	103
9	Viral Shedding and Biodistribution of G207, a Multimutated, Conditionally Replicating Herpes Simplex Virus Type 1, after Intracerebral Inoculation in Aotus. Molecular Therapy, 2000, 2, 588-595.	8.2	90
10	Oncolytic HSV Armed with Platelet Factor 4, an Antiangiogenic Agent, Shows Enhanced Efficacy. Molecular Therapy, 2006, 14, 789-797.	8.2	77
11	Dominant-Negative Fibroblast Growth Factor Receptor Expression Enhances Antitumoral Potency of Oncolytic Herpes Simplex Virus in Neural Tumors. Clinical Cancer Research, 2006, 12, 6791-6799.	7.0	72
12	Preclinical Safety Evaluation of G207, a Replication-Competent Herpes Simplex Virus Type 1, Inoculated Intraprostatically in Mice and Nonhuman Primates. Human Gene Therapy, 2001, 12, 999-1010.	2.7	67
13	Oncolytic virus therapy using genetically engineered herpes simplex viruses. Frontiers in Bioscience - Landmark, 2008, 13, 2060.	3.0	66
14	Oncolytic Herpes Simplex Virus Vector G47Î" in Combination with Androgen Ablation for the Treatment of Human Prostate Adenocarcinoma. Clinical Cancer Research, 2005, 11, 7886-7890.	7.0	57
15	Oncolytic virus therapy in Japan: progress in clinical trials and future perspectives. Japanese Journal of Clinical Oncology, 2019, 49, 201-209.	1.3	55
16	Evaluation of ganciclovir-mediated enhancement of the antitumoral effect in oncolytic, multimutated herpes simplex virus type 1 (G207) therapy of brain tumors. Cancer Gene Therapy, 2000, 7, 939-946.	4.6	51
17	Corticosteroid Administration Does Not Affect Viral Oncolytic Activity, but Inhibits Antitumor Immunity in ReplicationCompetent Herpes Simplex Virus Tumor Therapy. Human Gene Therapy, 1999, 10, 2869-2878.	2.7	50
18	Long-term control of disseminated pleomorphic xanthoastrocytoma with anaplastic features by means of stereotactic irradiation. Neuro-Oncology, 2009, 11, 446-451.	1.2	49

#	Article	IF	CITATION
19	lonizing Radiation Does Not Alter the Antitumor Activity of Herpes Simplex Virus Vector G207 in Subcutaneous Tumor Models of Human and Murine Prostate Cancer. Neoplasia, 2001, 3, 451-456.	5.3	48
20	Efficacy of a Third-Generation Oncolytic Herpes Virus G47Δ in Advanced Stage Models of Human Gastric Cancer. Molecular Therapy - Oncolytics, 2020, 17, 205-215.	4.4	48
21	Extended field stereotactic radiosurgery for recurrent glioblastoma. Cancer, 2012, 118, 4193-4200.	4.1	45
22	Therapeutic Efficacy of G207, a Conditionally Replicating Herpes Simplex Virus Type 1 Mutant, for Gallbladder Carcinoma in Immunocompetent Hamsters. Molecular Therapy, 2001, 3, 431-437.	8.2	44
23	Identification of RNA-Binding Protein LARP4B as a Tumor Suppressor in Glioma. Cancer Research, 2016, 76, 2254-2264.	0.9	41
24	An armed oncolytic herpes simplex virus expressing thrombospondinâ€1 has an enhanced ⟨i⟩in vivo⟨ i⟩ antitumor effect against human gastric cancer. International Journal of Cancer, 2013, 132, 485-494.	5.1	39
25	Current status of clinical trials assessing oncolytic virus therapy for urological cancers. International Journal of Urology, 2017, 24, 342-351.	1.0	38
26	ATIM-14. RESULTS OF PHASE II CLINICAL TRIAL OF ONCOLYTIC HERPES VIRUS G47Δ IN PATIENTS WITH GLIOBLASTOMA. Neuro-Oncology, 2019, 21, vi4-vi4.	1.2	37
27	Oncolytic herpes virus G47î" works synergistically with CTLA-4 inhibition via dynamic intratumoral immune modulation. Molecular Therapy - Oncolytics, 2021, 22, 129-142.	4.4	37
28	Significance of perivascular tumour cells defined by CD109 expression in progression of glioma. Journal of Pathology, 2017, 243, 468-480.	4.5	36
29	<scp>SIRT</scp> 2â€mediated inactivation of p73 is required for glioblastoma tumorigenicity. EMBO Reports, 2018, 19, .	4.5	35
30	CDK8 maintains stemness and tumorigenicity of glioma stem cells by regulating the c-MYC pathway. Oncogene, 2021, 40, 2803-2815.	5.9	33
31	The role of the SWI/SNF chromatin remodeling complex in maintaining the stemness of glioma initiating cells. Scientific Reports, 2017, 7, 889.	3.3	32
32	Therapeutic Strategy for Targeting Aggressive Malignant Gliomas by Disrupting Their Energy Balance. Journal of Biological Chemistry, 2016, 291, 21496-21509.	3.4	31
33	Identification of antipsychotic drug fluspirilene as a potential anti-glioma stem cell drug. Oncotarget, 2017, 8, 111728-111741.	1.8	29
34	Active Immunotherapy Oncolytic Virus Therapy Using HSV-1. Advances in Experimental Medicine and Biology, 2012, 746, 178-186.	1.6	27
35	A case of radiation-induced osteosarcoma treated effectively by boron neutron capture therapy. Radiation Oncology, 2014, 9, 237.	2.7	25
36	Thirdâ€generation oncolytic herpes simplex virus inhibits the growth of liver tumors in mice. Cancer Science, 2018, 109, 600-610.	3.9	24

#	Article	lF	CITATIONS
37	"Armed―oncolytic herpes simplex viruses for brain tumor therapy. Cell Adhesion and Migration, 2008, 2, 208-213.	2.7	23
38	Neoadjuvant Use of Oncolytic Herpes Virus G47Î" Enhances the Antitumor Efficacy of Radiofrequency Ablation. Molecular Therapy - Oncolytics, 2020, 18, 535-545.	4.4	23
39	Oncolytic Virus Therapy with HSV-1 for Hematological Malignancies. Molecular Therapy, 2021, 29, 762-774.	8.2	22
40	Oncolytic Virus Therapy Using Genetically Engineered Herpes Simplex Viruses. Human Cell, 2002, 15, 151-159.	2.7	18
41	Efficacy and safety of a third-generation oncolytic herpes virus G47Δ in models of human esophageal carcinoma. Molecular Therapy - Oncolytics, 2021, 23, 402-411.	4.4	17
42	Autophagy inhibition synergizes with calcium mobilization to achieve efficient therapy of malignant gliomas. Cancer Science, 2018, 109, 2497-2508.	3.9	16
43	Oncolytic herpes simplex virus type 1 (HSVâ€1) in combination with lenalidomide for plasma cell neoplasms. British Journal of Haematology, 2021, 192, 343-353.	2.5	15
44	Oncolytic herpes virus G47î" injected into tongue cancer swiftly traffics in lymphatics and suppresses metastasis. Molecular Therapy - Oncolytics, 2021, 22, 388-398.	4.4	14
45	Tyrosine kinase Eph receptor A6 sensitizes gliomaâ€initiating cells towards bone morphogenetic proteinâ€induced apoptosis. Cancer Science, 2019, 110, 3486-3496.	3.9	13
46	Foxr2 promotes formation of CNS-embryonal tumors in a Trp53-deficient background. Neuro-Oncology, 2019, 21, 993-1004.	1.2	13
47	Tripleâ€mutated oncolytic herpes virus for treating both fast―and slowâ€growing tumors. Cancer Science, 2021, 112, 3293-3301.	3.9	13
48	Efficacy of a third-generation oncolytic herpes simplex virus in neuroendocrine tumor xenograft models. Oncotarget, 2019, 10, 7132-7141.	1.8	13
49	PCDH10 is required for the tumorigenicity of glioblastoma cells. Biochemical and Biophysical Research Communications, 2014, 444, 13-18.	2.1	12
50	Identification of a novel fusion gene <i>HMGA2â€EGFR</i> in glioblastoma. International Journal of Cancer, 2018, 142, 1627-1639.	5.1	12
51	CLINICAL DEVELOPMENT OF A THIRD-GENERATION ONCOLYTIC HSV-1 (G47Î") FOR MALIGNANT GLIOMA. Gene Therapy and Regulation, 2010, 05, 101-111.	0.3	8
52	Aberrant Active cis-Regulatory Elements Associated with Downregulation of RET Finger Protein Overcome Chemoresistance in Glioblastoma. Cell Reports, 2019, 26, 2274-2281.e5.	6.4	8
53	SMURF2 phosphorylation at Thr249 modifies glioma stemness and tumorigenicity by regulating TGF-Î ² receptor stability. Communications Biology, 2022, 5, 22.	4.4	8
54	Oncolytic virotherapy with SOCS3 enhances viral replicative potency and oncolysis for gastric cancer. Oncotarget, 2021, 12, 344-354.	1.8	7

#	Article	IF	CITATIONS
55	MiR-199a Inhibits Secondary Envelopment of Herpes Simplex Virus-1 Through the Downregulation of Cdc42-specific GTPase Activating Protein Localized in Golgi Apparatus. Scientific Reports, 2017, 7, 6650.	3.3	6
56	Oncolytic virotherapy with human telomerase reverse transcriptase promoter regulation enhances cytotoxic effects against gastric cancer. Oncology Letters, 2021, 21, 490.	1.8	6
57	Therapeutic advantage of targeting lysosomal membrane integrity supported by lysophagy in malignant glioma. Cancer Science, 2022, 113, 2716-2726.	3.9	6
58	PRRX1 induced by BMP signaling decreases tumorigenesis by epigenetically regulating gliomaâ€initiating cell properties via DNA methyltransferase 3A. Molecular Oncology, 2022, 16, 269-288.	4.6	5
59	Development of Oncolytic Replication-Competent Herpes Simplex Virus Vectors. , 2005, , 199-210.		2
60	Enhancement of the efficacy of radiofrequency ablation by neoadjuvant oncolytic virus therapy via antitumor immunity and the booster effect of immune checkpoint inhibitors Journal of Clinical Oncology, 2019, 37, 253-253.	1.6	1
61	Efficacy of a third-generation oncolytic herpes simplex virus in refractory soft tissue sarcoma xenograft models. Molecular Therapy - Oncolytics, 2022, 25, 225-235.	4.4	1
62	MICRO RNA BASED STRATEGY FOR ENHANCING THE EFFECT OF ONCOLYTIC HSV-1 VIRUS THERAPY. Neuro-Oncology, 2014, 16, iii37-iii37.	1.2	0
63	Oncolytic Virus Therapy for Malignant Glioma using G47Δ. Japanese Journal of Neurosurgery, 2016, 25, 973-978.	0.0	O
64	Brain Tumor Therapy using Oncolytic Herpes Simplex Virus Vectors. Japanese Journal of Neurosurgery, 2006, 15, 97-104.	0.0	0
65	Clinical Practice and Perspectives in Neurosurgery using Multi-modality Functional Imaging and Monitoring. Japanese Journal of Neurosurgery, 2007, 16, 206-214.	0.0	O
66	Preoperative Mapping of Language-related Functions using Functional MRI and Magnetoencephalography(<special issue=""> Functional Neurophysiological Monitoring for) Tj ETQq0 0 0 0</special>	rgBTo/. 0 verl	locko10 Tf 50
67	Oncolytic Virus Therapy with HSV-1 for Hematologic Malignancies. Blood, 2019, 134, 3242-3242.	1.4	0