Jutao Jin

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7431104/publications.pdf

Version: 2024-02-01

394421 580821 2,432 25 26 19 h-index citations g-index papers 26 26 26 4677 docs citations times ranked citing authors all docs

#	Article	IF	Citations
1	In-situ formation of N doped hollow graphene Nanospheres/CNTs architecture with encapsulated Fe3C@C nanoparticles as efficient bifunctional oxygen electrocatalysts. Journal of Alloys and Compounds, 2020, 828, 154238.	5.5	16
2	Rapid precipitation-reduction synthesis of carbon-supported silver for efficient oxygen reduction reaction in alkaline solution. Journal of Solid State Electrochemistry, 2019, 23, 2601-2607.	2.5	5
3	Three-dimensional mesoporous sandwich-like g-C3N4-interconnected CuCo2O4 nanowires arrays as ultrastable anode for fast lithium storage. Journal of Colloid and Interface Science, 2019, 554, 269-277.	9.4	35
4	Highly doped N, S-Codoped carbon nanomeshes for excellent electrocapacitive performance. Journal of Alloys and Compounds, 2019, 803, 704-710.	5.5	12
5	Chemical Foaming Coupled Self-Etching: A Multiscale Processing Strategy for Ultrahigh-Surface-Area Carbon Aerogels. ACS Applied Materials & Samp; Interfaces, 2018, 10, 2819-2827.	8.0	5
6	Cobalt and Nitrogen Co-Doped Graphene-Carbon Nanotube Aerogel as an Efficient Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions. Catalysts, 2018, 8, 275.	3.5	24
7	Mg–porphyrin complex doped divinylbenzene based porous organic polymers (POPs) as highly efficient heterogeneous catalysts for the conversion of CO ₂ to cyclic carbonates. Dalton Transactions, 2018, 47, 13135-13141.	3.3	30
8	In situ growth of cobalt sulfide hollow nanospheres embedded in nitrogen and sulfur co-doped graphene nanoholes as a highly active electrocatalyst for oxygen reduction and evolution. Journal of Materials Chemistry A, 2017, 5, 12354-12360.	10.3	93
9	Interconnected Phosphorus and Nitrogen Codoped Porous Exfoliated Carbon Nanosheets for High-Rate Supercapacitors. ACS Applied Materials & Samp; Interfaces, 2017, 9, 17317-17325.	8.0	79
10	Substrate-mediated growth of vanadium carbide with controllable structure as high performance electrocatalysts for dye-sensitized solar cells. RSC Advances, 2017, 7, 26710-26716.	3.6	15
11	Activating Mn3O4 by Morphology Tailoring for Oxygen Reduction Reaction. Electrochimica Acta, 2016, 205, 38-44.	5. 2	65
12	A direct phase separation approach synthesis of hierarchically porous functional carbon as an advanced electrocatalyst for oxygen reduction reaction. Carbon, 2016, 109, 306-313.	10.3	6
13	A Fe-N-C catalyst with highly dispersed iron in carbon for oxygen reduction reaction and its application in direct methanol fuel cells. Chinese Journal of Catalysis, 2016, 37, 539-548.	14.0	36
14	Yolk–shell structured iron carbide/N-doped carbon composite as highly efficient and stable oxygen reduction reaction electrocatalyst. Carbon, 2015, 82, 572-578.	10.3	53
15	Rational design of a highly efficient Pt/graphene–Nafion® composite fuel cell electrode architecture. Journal of Materials Chemistry A, 2015, 3, 1641-1648.	10.3	29
16	Catalyst-Free Synthesis of Crumpled Boron and Nitrogen Co-Doped Graphite Layers with Tunable Bond Structure for Oxygen Reduction Reaction. ACS Nano, 2014, 8, 3313-3321.	14.6	258
17	Controllable Synthesis of Cobalt Monoxide Nanoparticles and the Size-Dependent Activity for Oxygen Reduction Reaction. ACS Catalysis, 2014, 4, 2998-3001.	11.2	78
18	Efficient Oxygen Reduction Electrocatalyst Based on Edge-Nitrogen-Rich Graphene Nanoplatelets: Toward a Large-Scale Synthesis. ACS Applied Materials & Samp; Interfaces, 2014, 6, 3930-3936.	8.0	51

#	Article	IF	CITATIONS
19	A highly active and stable electrocatalyst for the oxygen reduction reaction based on a graphene-supported g-C3N4@cobalt oxide core–shell hybrid in alkaline solution. Journal of Materials Chemistry A, 2013, 1, 10538.	10.3	107
20	Graphene-based non-noble-metal Co/N/C catalyst for oxygen reduction reaction in alkaline solution. Journal of Power Sources, 2013 , 243 , $65-71$.	7.8	165
21	Advanced Oxygen Reduction Electrocatalyst Based on Nitrogen-Doped Graphene Derived from Edible Sugar and Urea. ACS Applied Materials & Sugar and Urea.	8.0	198
22	Graphene-xerogel-based non-precious metal catalyst for oxygen reduction reaction. Electrochemistry Communications, 2013, 28, 5-8.	4.7	26
23	FeCo–Nx embedded graphene as high performance catalysts for oxygen reduction reaction. Applied Catalysis B: Environmental, 2013, 130-131, 143-151.	20.2	169
24	NiCo ₂ S ₄ @graphene as a Bifunctional Electrocatalyst for Oxygen Reduction and Evolution Reactions. ACS Applied Materials & Samp; Interfaces, 2013, 5, 5002-5008.	8.0	641
25	Identifying the Active Site in Nitrogen-Doped Graphene for the VO ²⁺ /VO ₂ ⁺ Redox Reaction. ACS Nano, 2013, 7, 4764-4773.	14.6	236
26	The Preparation and Study of Graphene Supported Co _x Mn _{3-X} O ₄ Nanocomposites as Advanced Oxygen Reduction Reaction Electrocatalyst. Advanced Materials Research, 0, 652-654, 348-351.	0.3	0