
Sundaram Gunasekaran

List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/743051/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	Selected properties of pH-sensitive, biodegradable chitosan–poly(vinyl alcohol) hydrogel. Polymer International, 2004, 53, 911-918.	1.6	344
2	Use of whey proteins for encapsulation and controlled delivery applications. Journal of Food Engineering, 2007, 83, 31-40.	2.7	280
3	Effect of xanthan gum on physicochemical properties of whey protein isolate stabilized oil-in-water emulsions. Food Hydrocolloids, 2007, 21, 555-564.	5.6	271
4	Electrochemically reduced graphene oxide sheets for use in high performance supercapacitors. Carbon, 2013, 51, 36-44.	5.4	268
5	Effects of protein concentration and oil-phase volume fraction on the stability and rheology of menhaden oil-in-water emulsions stabilized by whey protein isolate with xanthan gum. Food Hydrocolloids, 2009, 23, 165-174.	5.6	260
6	A highly sensitive non-enzymatic glucose sensor based on a simple two-step electrodeposition of cupric oxide (CuO) nanoparticles onto multi-walled carbon nanotube arrays. Talanta, 2010, 82, 25-33.	2.9	238
7	Dynamic oscillatory shear testing of foods— selected applications. Trends in Food Science and Technology, 2000, 11, 115-127.	7.8	235
8	Ultrasonic characterization of foods and drinks: Principles, methods, and applications. Critical Reviews in Food Science and Nutrition, 1997, 37, 1-46.	5.4	231
9	Application of Peleg model to study water absorption in chickpea during soaking. Journal of Food Engineering, 2002, 53, 153-159.	2.7	220
10	Electrochemical synthesis of reduced graphene sheet–AuPd alloy nanoparticle composites for enzymatic biosensing. Biosensors and Bioelectronics, 2011, 29, 159-166.	5.3	208
11	An amperometric non-enzymatic glucose sensor by electrodepositing copper nanocubes onto vertically well-aligned multi-walled carbon nanotube arrays. Biosensors and Bioelectronics, 2010, 26, 279-284.	5.3	196
12	Nickel nanoparticle–chitosan-reduced graphene oxide-modified screen-printed electrodes for enzyme-free glucose sensing in portable microfluidic devices. Biosensors and Bioelectronics, 2013, 47, 530-538.	5.3	185
13	Preparation and Characterization of Whey Protein Film Incorporated with TiO ₂ Nanoparticles. Journal of Food Science, 2009, 74, N50-6.	1.5	183
14	Computer vision technology for food quality assurance. Trends in Food Science and Technology, 1996, 7, 245-256.	7.8	176
15	PULSED MICROWAVE-VACUUM DRYING OF FOOD MATERIALS. Drying Technology, 1999, 17, 395-412.	1.7	167
16	Highly Sensitive Detection and Removal of Lead Ions in Water Using Cysteine-Functionalized Graphene Oxide/Polypyrrole Nanocomposite Film Electrode. ACS Applied Materials & Interfaces, 2015, 7, 15935-15943.	4.0	159
17	MICROWAVE-VACUUM DRYING OF CRANBERRIES: PART II. QUALITY EVALUATION. Journal of Food Processing and Preservation, 1996, 20, 145-156.	0.9	150
18	MICROWAVE-VACUUM DRYING OF CRANBERRIES: PART I. ENERGY USE AND EFFICIENCY. Journal of Food Processing and Preservation, 1996, 20, 121-143.	0.9	144

#	Article	IF	CITATIONS
19	Comparison of temperature distribution in model food cylinders based on Maxwell's equations and Lambert's law during pulsed microwave heating. Journal of Food Engineering, 2004, 64, 445-453.	2.7	127
20	Yield Stress in Foods: Measurements and Applications. International Journal of Food Properties, 2009, 12, 70-101.	1.3	115
21	Preparation of sub-100-nm β-lactoglobulin (BLG) nanoparticles. Journal of Microencapsulation, 2006, 23, 887-898.	1.2	113
22	State of water in chitosan–PVA hydrogel. Journal of Applied Polymer Science, 2006, 101, 3227-3232.	1.3	113
23	A Water-Stable Luminescent Metal–Organic Framework for Rapid and Visible Sensing of Organophosphorus Pesticides. ACS Applied Materials & Interfaces, 2019, 11, 26250-26260.	4.0	109
24	Applications of graphene in quality assurance and safety of food. TrAC - Trends in Analytical Chemistry, 2014, 60, 36-53.	5.8	104
25	An Electrochemical Immunosensor for Rapid and Sensitive Detection of Mycotoxins Fumonisin B1 and Deoxynivalenol. Electrochimica Acta, 2016, 213, 89-97.	2.6	103
26	The electrochemical perspective of bioelectrocatalytic activities in microbial electrolysis and microbial fuel cells. Energy Reports, 2019, 5, 1116-1136.	2.5	100
27	Biopolymer coating of soybean lecithin liposomes via layer-by-layer self-assembly as novel delivery system for ellagic acid. Journal of Functional Foods, 2010, 2, 99-106.	1.6	98
28	MnO ₂ Nanoflowers Deposited on Graphene Paper as Electrode Materials for Supercapacitors. ACS Applied Nano Materials, 2019, 2, 4386-4394.	2.4	98
29	Sensitive detection of pesticides by a highly luminescent metal-organic framework. Sensors and Actuators B: Chemical, 2018, 260, 339-345.	4.0	96
30	Analysis of chickpea soaking by simultaneous water transfer and water–starch reaction. Journal of Food Engineering, 2001, 50, 91-98.	2.7	90
31	Nanozymes-based biosensors for food quality and safety. TrAC - Trends in Analytical Chemistry, 2020, 126, 115841.	5.8	87
32	Effect of experimental parameters on temperature distribution during continuous and pulsed microwave heating. Journal of Food Engineering, 2007, 78, 1452-1456.	2.7	86
33	Highly selective colorimetric and electrochemical sensing of iron (III) using Nile red functionalized graphene film. Biosensors and Bioelectronics, 2017, 89, 430-436.	5.3	81
34	Indium tin oxide-coated glass modified with reduced graphene oxide sheets and gold nanoparticles as disposable working electrodes for dopamine sensing in meat samples. Nanoscale, 2012, 4, 4594.	2.8	79
35	Biopolymer/gold nanoparticles composite plasmonic thermal history indicator to monitor quality and safety of perishable bioproducts. Biosensors and Bioelectronics, 2017, 92, 109-116.	5.3	67
36	Dual-channel ITO-microfluidic electrochemical immunosensor for simultaneous detection of two mycotoxins. Talanta, 2019, 194, 709-716.	2.9	66

SUNDARAM GUNASEKARAN

#	Article	IF	CITATIONS
37	Influence of Drying Temperature, Water Content, and Heating Rate on Gelatinization of Corn Starches. Journal of Agricultural and Food Chemistry, 2006, 54, 4235-4245.	2.4	64
38	Bioengineered vocal fold mucosa for voice restoration. Science Translational Medicine, 2015, 7, 314ra187.	5.8	60
39	FTIR spectroscopic evaluation of sucrose-maltodextrin-sodium citrate bioglass. Food Hydrocolloids, 2017, 70, 371-382.	5.6	58
40	A low-potential, H2O2-assisted electrodeposition of cobalt oxide/hydroxide nanostructures onto vertically-aligned multi-walled carbon nanotube arrays for glucose sensing. Electrochimica Acta, 2011, 56, 5538-5544.	2.6	56
41	Electrochemical detection of Salmonella using an invA genosensor on polypyrrole-reduced graphene oxide modified glassy carbon electrode and AuNPs-horseradish peroxidase-streptavidin as nanotag. Analytica Chimica Acta, 2019, 1074, 80-88.	2.6	55
42	Synthesis of Positively and Negatively Charged CeO ₂ Nanoparticles: Investigation of the Role of Surface Charge on Growth and Development of <i>Drosophila melanogaster</i> . ACS Omega, 2019, 4, 104-113.	1.6	55
43	Facile and green synthesis of highly conducting graphene paper. Carbon, 2018, 138, 108-117.	5.4	54
44	Chitosan and gold nanoparticles-based thermal history indicators and frozen indicators for perishable and temperature-sensitive products. Food Control, 2018, 85, 186-193.	2.8	53
45	MILK COAGULATION CUT-TIME DETERMINATION USING ULTRASONICS. Journal of Food Process Engineering, 1996, 19, 63-73.	1.5	52
46	Reduced Graphene Oxide/Carbon Nanotube/Gold Nanoparticles Nanocomposite Functionalized Screenâ€Printed Electrode for Sensitive Electrochemical Detection of Endocrine Disruptor Bisphenol A. Electroanalysis, 2015, 27, 2527-2536.	1.5	51
47	Dynamic Rheological Properties of Mozzarella Cheese During Refrigerated Storage. Journal of Food Science, 1996, 61, 566-569.	1.5	48
48	Swelling of pH-sensitive chitosan–poly(vinyl alcohol) hydrogels. Journal of Applied Polymer Science, 2006, 102, 4665-4671.	1.3	48
49	An electrochemical immunosensing method for detecting melanoma cells. Biosensors and Bioelectronics, 2015, 68, 508-515.	5.3	48
50	Facile fabrication of highly ordered polyaniline–exfoliated graphite composite for enhanced charge storage. Carbon, 2019, 144, 756-763.	5.4	48
51	Kinetics of in situ and in vitro gelatinization of hard and soft wheat starches during cooking in water. Journal of Food Engineering, 2002, 52, 1-7.	2.7	43
52	Enhancing Nanoparticle-Based Visible Detection by Controlling the Extent of Aggregation. Scientific Reports, 2012, 2, 456.	1.6	43
53	Highly Selective Mercury Detection at Partially Oxidized Graphene/Poly(3,4-Ethylenedioxythiophene):Poly(Styrenesulfonate) Nanocomposite Film-Modified Electrode. Frontiers in Materials, 2014, 1, .	1.2	41
54	Paper-fluidic electrochemical biosensing platform with enzyme paper and enzymeless electrodes. Sensors and Actuators B: Chemical, 2014, 203, 44-53.	4.0	39

#	Article	IF	CITATIONS
55	Ultrasensitive electrochemical genosensor for detection of CaMV35S gene with Fe3O4-Au@Ag nanoprobe. Talanta, 2020, 206, 120205.	2.9	39
56	Effect of freezing and frozen storage on microstructure of Mozzarella and pizza cheeses. LWT - Food Science and Technology, 2009, 42, 9-16.	2.5	38
57	A sensitive enzymeless hydrogen-peroxide sensor based on epitaxially-grown Fe3O4 thin film. Analytica Chimica Acta, 2011, 708, 44-51.	2.6	38
58	Facile synthesis of graphene paper/polypyrrole nanocomposite as electrode for flexible solid-state supercapacitor. Journal of Energy Storage, 2020, 30, 101533.	3.9	37
59	Reduced Graphene Oxide-Poly(3,4-ethylenedioxythiophene) Polystyrenesulfonate Based Dual-Selective Sensor for Iron in Different Oxidation States. ACS Sensors, 2016, 1, 151-157.	4.0	36
60	Correlation of Dynamic and Steady Flow Viscosities of Food Materials. Applied Rheology, 2001, 11, 134-140.	3.5	35
61	Thermorheological evaluation of gelation of gelatin with sugar substitutes. LWT - Food Science and Technology, 2016, 69, 570-578.	2.5	35
62	Ultrasensitive electrochemical immunoassay for melanoma cells using mesoporous polyaniline. Chemical Communications, 2018, 54, 710-714.	2.2	35
63	Optimization of pulsed microwave heating. Journal of Food Engineering, 2007, 78, 1457-1462.	2.7	34
64	Bifunctional linker-based immunosensing for rapid and visible detection of bacteria in real matrices. Biosensors and Bioelectronics, 2018, 100, 389-395.	5.3	34
65	Plasma-Enhanced Modification of Xanthan Gum and Its Effect on Rheological Properties. Journal of Agricultural and Food Chemistry, 2005, 53, 3618-3625.	2.4	33
66	Spectroscopic and microscopic investigation of gold nanoparticle nucleation and growth mechanisms using gelatin as a stabilizer. Journal of Nanoparticle Research, 2012, 14, 1.	0.8	33
67	Using Lâ€Arginineâ€Functionalized Gold Nanorods for Visible Detection of Mercury(II) Ions. Journal of Food Science, 2015, 80, N828-33.	1.5	33
68	Cow blood adhesive: Characterization of physicochemical and adhesion properties. International Journal of Adhesion and Adhesives, 2010, 30, 139-144.	1.4	32
69	Digital pH Test Strips for In-Field pH Monitoring Using Iridium Oxide-Reduced Graphene Oxide Hybrid Thin Films. ACS Sensors, 2016, 1, 1235-1243.	4.0	32
70	Alkali Cold Gelation of Whey Proteins. Part I: Solâ^'Gelâ^'Sol(â^'Gel) Transitions. Langmuir, 2009, 25, 5785-5792.	1.6	30
71	Microfluidic-integrated patterned ITO immunosensor for rapid detection of prostate-specific membrane antigen biomarker in prostate cancer. Biosensors and Bioelectronics, 2017, 95, 160-167.	5.3	30
72	Atomic force microscopy-based cancer diagnosis by detecting cancer-specific biomolecules and cells. Biochimica Et Biophysica Acta: Reviews on Cancer, 2019, 1871, 367-378.	3.3	30

#	Article	lF	CITATIONS
73	Experimental data on the production and characterization of biochars derived from coconut-shell wastes obtained from the Colombian Pacific Coast at low temperature pyrolysis. Data in Brief, 2020, 28, 104855.	0.5	29
74	Metal–Organic Framework/Polyaniline Nanocomposites for Lightweight Energy Storage. ACS Applied Energy Materials, 2020, 3, 12368-12377.	2.5	29
75	Comparative efficacy of biogenic zinc oxide nanoparticles synthesized by Pseudochrobactrum sp. C5 and chemically synthesized zinc oxide nanoparticles for catalytic degradation of dyes and wastewater treatment. Environmental Science and Pollution Research, 2021, 28, 28307-28318.	2.7	29
76	Low-temperature solution process for preparing flexible transparent carbon nanotube film for use in flexible supercapacitors. Nano Research, 2015, 8, 3430-3445.	5.8	28
77	Anisotropy in Tensile Properties of Mozzarella Cheese. Journal of Food Science, 1997, 62, 1031-1033.	1.5	27
78	Effective removal of organics from corn wet milling steepwater effluent by electrochemical oxidation and adsorption on 3-D granulated graphite electrode. Journal of Environmental Chemical Engineering, 2015, 3, 930-937.	3.3	27
79	Gelatinâ€Templated Gold Nanoparticles as Novel Time–Temperature Indicator. Journal of Food Science, 2012, 77, N45-9.	1.5	25
80	Electrospun plant mucilage nanofibers as biocompatible scaffolds for cell proliferation. International Journal of Biological Macromolecules, 2018, 115, 1218-1224.	3.6	25
81	Functionally-modified egg white albumen hydrogels. Polymer International, 2004, 53, 1994-2000.	1.6	24
82	Dairy manure protein analysis using UV-vis based on the Bradford method. Analytical Methods, 2015, 7, 2645-2652.	1.3	24
83	Gold nanoparticle-doped three-dimensional reduced graphene hydrogel modified electrodes for amperometric determination of indole-3-acetic acid and salicylic acid. Nanoscale, 2019, 11, 10247-10256.	2.8	24
84	A systems analysis of pasta filata process during Mozzarella cheese making. Journal of Food Engineering, 2005, 69, 399-408.	2.7	23
85	Viscoelastic characterization of selected foods over an extended frequency range. Rheologica Acta, 2006, 46, 131-142.	1.1	23
86	Gold nanoparticle-based thermal history indicator for monitoring low-temperature storage. Mikrochimica Acta, 2015, 182, 1305-1311.	2.5	23
87	Optimal energy management in grain drying. Critical Reviews in Food Science and Nutrition, 1986, 25, 1-48.	1.3	22
88	A Simple and Green Route for Roomâ€Temperature Synthesis of Gold Nanoparticles and Selective Colorimetric Detection of Cysteine. Journal of Food Science, 2015, 80, N2071-8.	1.5	22
89	Rapid and Scalable Synthesis of Zeolitic Imidazole Framework (ZIFâ€8) and its Use for the Detection of Trace Levels of Nitroaromatic Explosives. Advanced Sustainable Systems, 2018, 2, 1800053.	2.7	22
90	Streptavidin-Coated Au Nanoparticles Coupled with Biotinylated Antibody-Based Bifunctional Linkers as Plasmon-Enhanced Immunobiosensors. ACS Applied Nano Materials, 2020, 3, 1900-1909.	2.4	22

#	Article	IF	CITATIONS
91	One-pot nanoparticulation of potentially bioactive peptides and gallic acid encapsulation. Food Chemistry, 2016, 210, 317-324.	4.2	21
92	Probing the modulated formation of gold nanoparticles–beta-lactoglobulin corona complexes and their applications. Nanoscale, 2017, 9, 17758-17769.	2.8	21
93	FEAST of biosensors: Food, environmental and agricultural sensing technologies (FEAST) in North America. Biosensors and Bioelectronics, 2021, 178, 113011.	5.3	19
94	KINETICS OF NONENZYMATIC BROWNING IN CHEDDAR CHEESE POWDER DURING STORAGE. Journal of Food Processing and Preservation, 1997, 21, 379-393.	0.9	18
95	Synthesis and characterization of pH―and saltâ€responsive hydrogels based on etherificated sodium alginate. Journal of Applied Polymer Science, 2010, 115, 3161-3167.	1.3	18
96	Partially Oxidized Graphene/Metallic Singleâ€Walled Carbon Nanotubes Filmâ€Coated Electrode for Nanomolar Detection of Dopamine. Electroanalysis, 2015, 27, 1811-1816.	1.5	18
97	Azo dye functionalized graphene nanoplatelets for selective detection of bisphenol A and hydrogen peroxide. RSC Advances, 2015, 5, 87295-87305.	1.7	18
98	High-density platinum nanoparticle-decorated titanium dioxide nanofiber networks for efficient capillary photocatalytic hydrogen generation. Journal of Materials Chemistry A, 2016, 4, 11672-11679.	5.2	18
99	Hapten-Grafted Programmed Probe as a Corecognition Element for a Competitive Immunosensor to Detect Acetamiprid Residue in Agricultural Products. Journal of Agricultural and Food Chemistry, 2018, 66, 7815-7821.	2.4	18
100	A flow-through microfluidic system for the detection of circulating melanoma cells. Biosensors and Bioelectronics, 2019, 142, 111522.	5.3	18
101	Electrochemical detection of mobile zinc ions for early diagnosis of prostate cancer. Journal of Electroanalytical Chemistry, 2019, 833, 269-274.	1.9	18
102	Gelling properties of gelatin–xanthan gum systems with high levels of co-solutes. Journal of Food Engineering, 2013, 118, 289-295.	2.7	17
103	Graphene-Based Nanosensors and Smart Food Packaging Systems for Food Safety and Quality Monitoring. , 2018, , 267-306.		17
104	Evaluating Viscosity of Surimi Paste at Different Moisture Contents. Applied Rheology, 2004, 14, 133-139.	3.5	16
105	Self-indicating nanobiosensor for detection of 2,4-dinitrophenol. Food Control, 2010, 21, 155-161.	2.8	16
106	Protein interactions in reduced-fat and full-fat Cheddar cheeses during melting. LWT - Food Science and Technology, 2011, 44, 582-587.	2.5	16
107	A Switchable Linkerâ€Based Immunoassay for Ultrasensitive Visible Detection of <i>Salmonella</i> in Tomatoes. Journal of Food Science, 2017, 82, 2321-2328.	1.5	16
108	Spontaneous emulsification of fish oil at a substantially low surfactant-to-oil ratio: Emulsion characterization and filled hydrogel formation. Food Hydrocolloids, 2018, 82, 11-18.	5.6	16

#	Article	IF	CITATIONS
109	LSPRâ€based colorimetric biosensing for food quality and safety. Comprehensive Reviews in Food Science and Food Safety, 2021, 20, 5829-5855.	5.9	16
110	Alkali Cold Gelation of Whey Proteins. Part II: Protein Concentration. Langmuir, 2009, 25, 5793-5801.	1.6	15
111	Viscosity and Color Change During In Situ Solidification of Grape Pekmez. Food and Bioprocess Technology, 2011, 4, 241-246.	2.6	15
112	Applications of Confocal Microscopy to Fat Globule Structure in Cheese. Advances in Experimental Medicine and Biology, 1995, 367, 321-330.	0.8	15
113	Characterization and applications of silver nanoparticles-decorated electrospun nanofibers loaded with polyphenolic extract from rambutan (Nepelium lappaceum). Materialia, 2020, 11, 100687.	1.3	15
114	Analysis of cheese melt profile using inverse-Hill function. Journal of Food Engineering, 2008, 87, 266-273.	2.7	14
115	Modeling of melt conveying in a deep-channel single-screw cheese stretcher. Journal of Food Engineering, 2004, 61, 241-251.	2.7	13
116	Antioxidant Peptidic Particles for Delivery of Gallic Acid. Journal of Food Processing and Preservation, 2017, 41, e12767.	0.9	13
117	Ultrathin quasi-hexagonal gold nanostructures for sensing arsenic in tap water. RSC Advances, 2020, 10, 20211-20221.	1.7	13
118	Basil oil-loaded electrospun biofibers: Edible food packaging material. Journal of Food Engineering, 2022, 319, 110914.	2.7	13
119	Self-assembled tetrahedral DNA nanostructures-based ultrasensitive label-free detection of ampicillin. Talanta, 2022, 243, 123292.	2.9	13
120	Effect of temperature and concentration on rheological behavior of xanthan-carob mixed gels. Biotechnology and Bioprocess Engineering, 2007, 12, 295-301.	1.4	12
121	In situ microstructure evaluation during gelation of β-lactoglobulin. Journal of Food Engineering, 2009, 90, 161-170.	2.7	12
122	Disposable electrochemical immunosensor for prostate cancer detection. Sensors and Actuators B: Chemical, 2022, 360, 131667.	4.0	12
123	Delayed light emission as a means of quality evaluation of fruits and vegetables. Critical Reviews in Food Science and Nutrition, 1990, 29, 19-34.	5.4	11
124	Simulation of Lubricated Squeezing Flow of a Herschel-Bulkley Fluid Under Constant Force. Applied Rheology, 2000, 10, 274-279.	3.5	11
125	Rheology of Barium Sulfate Suspensions and Pre-thickened Beverages Used in Diagnosis and Treatment of Dysphagia. Applied Rheology, 2007, 17, 33137-1-33137-8.	3.5	11
126	MEASURING RHEOLOGICAL CHARACTERISTICS AND SPREADABILITY OF SOFT FOODS USING A MODIFIED SQUEEZEâ€FLOW APPARATUS. Journal of Texture Studies, 2009, 40, 275-287.	1.1	11

#	Article	IF	CITATIONS
127	Rheology and Oxidative Stability of Whey Protein Isolateâ€Stabilized Menhaden Oilâ€inâ€Water Emulsions as a Function of Heat Treatment. Journal of Food Science, 2010, 75, C1-8.	1.5	11
128	Thermal evaluation of sucrose-maltodextrin-sodium citrate bioglass: Glass transition temperature. Food Hydrocolloids, 2016, 60, 589-597.	5.6	11
129	Electrochemical Technologies for Environmental Remediation. , 2017, , 5-73.		11
130	Ironâ€encapsulated coldâ€set whey protein isolate gel powder – Part 1: Optimisation of preparation conditions and <i>inÂvitro</i> evaluation. International Journal of Dairy Technology, 2017, 70, 127-136.	1.3	11
131	A universal platform for multiple logic operations based on self-assembled a DNA tripod and graphene oxide. Chemical Engineering Journal, 2019, 368, 877-887.	6.6	11
132	Rheological evaluation of gelatin–xanthan gum system with high levels of co-solutes in the rubber-to-glass transition region. Food Hydrocolloids, 2012, 28, 141-150.	5.6	10
133	One-Pot Procedure for Recovery of Gallic Acid from Wastewater and Encapsulation within Protein Particles. Journal of Agricultural and Food Chemistry, 2016, 64, 1575-1582.	2.4	10
134	Use of cationic polymers to reduce pathogen levels during dairy manure separation. Journal of Environmental Management, 2016, 166, 260-266.	3.8	10
135	Emulsion gels loaded with pancreatic lipase: Preparation from spontaneously made emulsions and assessment of the rheological, microscopic and cargo release properties. Food Research International, 2022, 156, 111306.	2.9	10
136	Performance evaluation of different model mixers by numerical simulation. Journal of Food Engineering, 2005, 71, 295-303.	2.7	9
137	Ironâ€encapsulated coldâ€set whey protein isolate gel powder ―Part 2: Effect of iron fortification on sensory and storage qualities of Yoghurt. International Journal of Dairy Technology, 2016, 69, 601-608.	1.3	9
138	Synthesis of poly(8-aminopyrene-1,3,6-trisulfonic acid)/CNT Nanocomposite for Electrochemical Detection of Caffeine. Journal of the Electrochemical Society, 2016, 163, B638-B643.	1.3	9
139	Integrating electrochemical immunosensing and cell adhesion technologies for cancer cell detection and enumeration. Electrochimica Acta, 2018, 286, 205-211.	2.6	9
140	Azo dye-functionalized magnetic Fe3O4/polyacrylic acid nanoadsorbent for removal of lead (II) ions. Environmental Nanotechnology, Monitoring and Management, 2020, 14, 100380.	1.7	8
141	Numerical method for determining ultrasonic wave diffusivity through coagulating milk gel system. Journal of Food Engineering, 2003, 58, 103-110.	2.7	7
142	Modeling of melt conveying and heat transfer in a twin-screw cheese stretcher. Journal of Food Engineering, 2005, 70, 245-252.	2.7	7
143	Comparison of concentration dependence of mechanical modulus in two biopolymer gel systems using scaling analysis. Food Science and Biotechnology, 2013, 22, 1601-1606.	1.2	7
144	Synthesis and applications of MANs/poly(MMA-co-BA) nanocomposite latex by miniemulsion polymerization. Royal Society Open Science, 2017, 4, 170844.	1.1	7

1

#	Article	IF	CITATIONS
145	DRYING OF GELATINIZED WHOLE WHEAT. Drying Technology, 2001, 19, 333-342.	1.7	6
146	Mechanical spectra and calorimetric evaluation of gelatin–xanthan gum systems with high levels of co-solutes in the glassy state. Food Hydrocolloids, 2013, 30, 531-540.	5.6	6
147	PH—Postharvest Technology. Biosystems Engineering, 2002, 83, 175-184.	1.9	5
148	RHEOLOGICAL CHARACTERIZATION of COFFEE MUCILAGE. Journal of Food Process Engineering, 1996, 19, 331-342.	1.5	4
149	Thermal Properties of Fuzzy and Starch-coated Cottonseeds. Biosystems Engineering, 1999, 74, 185-191.	0.4	4
150	Whey Protein Hydrogels and Nanoparticles for Encapsulation and Controlled Delivery of Bioactive Compounds. , 0, , 227-284.		4
151	Broadband Viscoelastic Spectroscopy: A New Technique for Characterizing Rheological Behavior of Solid Foods. International Journal of Food Properties, 2009, 12, 102-113.	1.3	4
152	Rheological properties of rennet casein-whey protein gels prepared at different mixing speeds. Journal of Food Engineering, 2010, 99, 338-343.	2.7	4
153	Determining the gelation temperature of β-lactoglobulin using in situ microscopic imaging. Journal of Dairy Science, 2013, 96, 5565-5574.	1.4	4
154	Cranberry Proanthocyanidins-PANI Nanocomposite for the Detection of Bacteria Associated with Urinary Tract Infections. Biosensors, 2021, 11, 199.	2.3	4
155	Investigation of Elastic Modulus of Xanthan and Locust Bean Gum at Different Concentrations of Mixture Using Cascade Model. Journal of Texture Studies, 2014, 45, 80-87.	1.1	3
156	Nanoparticle Embedded Nanofiber Synthesis and Evaluation of Usability on Biomedical Applications. MRS Advances, 2018, 3, 233-240.	0.5	3
157	Synthesis and characterization of pHâ€and saltâ€sensitive hydrogel based on chemically modified poultry feather protein isolate. Journal of Applied Polymer Science, 2010, 116, 602-609.	1.3	2
158	Interactions between rennet casein and whey protein isolate during cooking in a torque rheometer. Journal of Food Engineering, 2009, 95, 119-125.	2.7	2
159	Evaluation of cheese meltability using convection and conduction melt profilers. International Journal of Dairy Technology, 2014, 67, 194-201.	1.3	2
160	Iridium Oxide-reduced Graphene Oxide Nanohybrid Thin Film Modified Screen-printed Electrodes as Disposable Electrochemical Paper Microfluidic pH Sensors. Journal of Visualized Experiments, 2016, , .	0.2	2
161	Computer Vision Systems. , 2010, , 41-72.		2

#	ARTICLE	IF	CITATIONS
163	EFFECTS of HIGH-PRESSURE APPLICATION ON SUBSEQUENT ATMOSPHERIC SOAKING of CORN. Journal of Food Process Engineering, 1992, 15, 159-167.	1.5	Ο
164	Enthalpy relaxation in sucrose-maltodextrin-sodium citrate bioglass. Journal of Food Engineering, 2017, 211, 85-94.	2.7	0
165	Cranberry proanthocyanidins composite electrospun nanofibers as a potential alternative for bacterial entrapment applications. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2022, 110, 1876-1886.	1.6	Ο