List of Publications by Year in descending order

Source: https://exaly.com/author-pdf/7430484/publications.pdf Version: 2024-02-01

#	Article	IF	CITATIONS
1	The influence hydroxyapatite nanoparticle shape and size on the properties of biphasic calcium phosphate scaffolds coated with hydroxyapatite–PCL composites. Biomaterials, 2010, 31, 5498-5509.	11.4	304
2	The synergistic effect of hierarchical micro/nano-topography and bioactive ions for enhanced osseointegration. Biomaterials, 2013, 34, 3184-3195.	11.4	282
3	Design and Fabrication of 3D printed Scaffolds with a Mechanical Strength Comparable to Cortical Bone to Repair Large Bone Defects. Scientific Reports, 2016, 6, 19468.	3.3	268
4	The incorporation of strontium and zinc into a calcium–silicon ceramic for bone tissue engineering. Biomaterials, 2010, 31, 3175-3184.	11.4	261
5	The effect of strontium incorporation into CaSiO3 ceramics on their physical and biological properties. Biomaterials, 2007, 28, 3171-3181.	11.4	209
6	Porous diopside (CaMgSi2O6) scaffold: A promising bioactive material for bone tissue engineering. Acta Biomaterialia, 2010, 6, 2237-2245.	8.3	207
7	Development of decellularized scaffolds for stem cell-driven tissue engineering. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 942-965.	2.7	179
8	The effect of mesoporous bioactive glass on the physiochemical, biological and drug-release properties of poly(dl-lactide-co-glycolide) films. Biomaterials, 2009, 30, 2199-2208.	11.4	177
9	The effect of surface chemistry modification of titanium alloy on signalling pathways in human osteoblasts. Biomaterials, 2005, 26, 7579-7586.	11.4	171
10	Biological response of human bone cells to zinc-modified Ca–Si-based ceramics. Acta Biomaterialia, 2008, 4, 1487-1497.	8.3	168
11	Preparation, characterization and in vitro bioactivity of mesoporous bioactive glasses (MBCs) scaffolds for bone tissue engineering. Microporous and Mesoporous Materials, 2008, 112, 494-503.	4.4	166
12	S100A8 and S100A9 in Human Arterial Wall. Journal of Biological Chemistry, 2005, 280, 41521-41529.	3.4	158
13	The responses of osteoblasts, osteoclasts and endothelial cells to zirconium modified calcium-silicate-based ceramic. Biomaterials, 2008, 29, 4392-4402.	11.4	158
14	Improvement of mechanical and biological properties of porous CaSiO3 scaffolds by poly(d,l-lactic) Tj ETQqO 0 0	rg <mark>8T</mark> 3/Ove	rlock 10 Tf 5(
15	DLC coatings: Effects of physical and chemical properties on biological response. Biomaterials, 2007, 28, 1620-1628.	11.4	152
16	Priming Adipose Stem Cells with Tumor Necrosis Factor-Alpha Preconditioning Potentiates Their Exosome Efficacy for Bone Regeneration. Tissue Engineering - Part A, 2017, 23, 1212-1220.	3.1	146

17	Factors regulating osteoclast formation in human tissues adjacent to peri-implant bone loss: expression of receptor activator NFκB, RANK ligand and osteoprotegerin. Biomaterials, 2004, 25, 565-573.	11.4	144
18	Effects of bioactive glass nanoparticles on the mechanical and biological behavior of composite coated scaffolds. Acta Biomaterialia, 2011, 7, 1307-1318.	8.3	140

2

#	Article	IF	CITATIONS
19	Functional Coatings or Films for Hard-Tissue Applications. Materials, 2010, 3, 3994-4050.	2.9	128
20	Preparation and analysis of macroporous TiO2 films on Ti surfaces for bone-tissue implants. Journal of Biomedical Materials Research Part B, 2001, 57, 588-596.	3.1	120
21	Carbon nanotubes: Their potential and pitfalls for bone tissue regeneration and engineering. Nanomedicine: Nanotechnology, Biology, and Medicine, 2013, 9, 1139-1158.	3.3	111
22	Current Approaches to Bone Tissue Engineering: The Interface between Biology and Engineering. Advanced Healthcare Materials, 2018, 7, e1701061.	7.6	106
23	Phenotypic expression of bone-related genes in osteoblasts grown on calcium phosphate ceramics with different phase compositions. Biomaterials, 2004, 25, 2507-2514.	11.4	105
24	Repairing a critical-sized bone defect with highly porous modified and unmodified baghdadite scaffolds. Acta Biomaterialia, 2012, 8, 4162-4172.	8.3	101
25	Incorporation of titanium into calcium silicate improved their chemical stability and biological properties. Journal of Biomedical Materials Research - Part A, 2008, 86A, 402-410.	4.0	99
26	Scaffold-based regeneration of skeletal tissues to meet clinical challenges. Journal of Materials Chemistry B, 2014, 2, 7272-7306.	5.8	98
27	Role of Biomaterials and Controlled Architecture on Tendon/Ligament Repair and Regeneration. Advanced Materials, 2020, 32, e1904511.	21.0	97
28	Proliferation and bone-related gene expression of osteoblasts grown on hydroxyapatite ceramics sintered at different temperature. Biomaterials, 2004, 25, 2949-2956.	11.4	92
29	Novel sphene coatings on Ti–6Al–4V for orthopedic implants using sol–gel method. Acta Biomaterialia, 2008, 4, 569-576.	8.3	90
30	Effect of surface chemical modification of bioceramic on phenotype of human bone-derived cells. Journal of Biomedical Materials Research Part B, 1999, 44, 389-396.	3.1	89
31	Architectural Design of 3D Printed Scaffolds Controls the Volume and Functionality of Newly Formed Bone. Advanced Healthcare Materials, 2019, 8, e1801353.	7.6	89
32	Porous bioactive diopside (CaMgSi2O6) ceramic microspheres for drug delivery. Acta Biomaterialia, 2010, 6, 820-829.	8.3	86
33	Doped Calcium Silicate Ceramics: A New Class of Candidates for Synthetic Bone Substitutes. Materials, 2017, 10, 153.	2.9	78
34	Two-Photon Dual-Emissive Carbon Dot-Based Probe: Deep-Tissue Imaging and Ultrasensitive Sensing of Intracellular Ferric Ions. ACS Applied Materials & Interfaces, 2020, 12, 18395-18406.	8.0	78
35	Interleukin-10 modulates pro-apoptotic effects of TNF-α in human articular chondrocytes in vitro. Cytokine, 2007, 40, 226-234.	3.2	75
36	S100A8 and S100A9 in experimental osteoarthritis. Arthritis Research and Therapy, 2010, 12, R16.	3.5	72

#	Article	IF	CITATIONS
37	Plasma-sprayed CaTiSiO ₅ ceramic coating on Ti-6Al-4V with excellent bonding strength, stability and cellular bioactivity. Journal of the Royal Society Interface, 2009, 6, 159-168.	3.4	71
38	Regulation of osteoclast activity in peri-implant tissues. Biomaterials, 2004, 25, 4877-4885.	11.4	70
39	The effect of Zn contents on phase composition, chemical stability and cellular bioactivity in Zn–Ca–Si system ceramics. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2008, 87B, 346-353.	3.4	70
40	Effect of self-assembled nanofibrous silk/polycaprolactone layer on the osteoconductivity and mechanical properties of biphasic calcium phosphate scaffolds. Acta Biomaterialia, 2012, 8, 302-312.	8.3	69
41	Short-Term Exposure to Tumor Necrosis Factor-Alpha Enables Human Osteoblasts to Direct Adipose Tissue-Derived Mesenchymal Stem Cells into Osteogenic Differentiation. Stem Cells and Development, 2012, 21, 2420-2429.	2.1	68
42	Bone biomimetic microenvironment induces osteogenic differentiation of adipose tissue-derived mesenchymal stem cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2012, 8, 507-515.	3.3	68
43	Activation and promotion of adipose stem cells by tumour necrosis factorâ€alpha preconditioning for bone regeneration. Journal of Cellular Physiology, 2013, 228, 1737-1744.	4.1	68
44	The effect of different titanium and hydroxyapatite-coated dental implant surfaces on phenotypic expression of human bone-derived cells. Journal of Biomedical Materials Research Part B, 2004, 71A, 98-107.	3.1	61
45	Interleukin-10 and Articular Cartilage: Experimental Therapeutical Approaches in Cartilage Disorders. Current Gene Therapy, 2009, 9, 306-315.	2.0	61
46	Titanium substrata composition influences osteoblastic phenotype:In vitro study. , 1999, 47, 360-366.		60
47	The modulation of osteogenesis in vitro by calcium titanium phosphate coatings. Biomaterials, 2004, 25, 4911-4919.	11.4	58
48	InÂvivo biocompatibility of a plasma-activated, coronary stent coating. Biomaterials, 2012, 33, 7984-7992.	11.4	57
49	Personalized 3D printed bone scaffolds: A review. Acta Biomaterialia, 2023, 156, 110-124.	8.3	57
50	Enhanced effects of nano-scale topography on the bioactivity and osteoblast behaviors of micron rough ZrO2 coatings. Colloids and Surfaces B: Biointerfaces, 2011, 86, 267-274.	5.0	56
51	Stem Cell-Derived Extracellular Vesicles for Treating Joint Injury and Osteoarthritis. Nanomaterials, 2019, 9, 261.	4.1	56
52	Beta-tricalcium phosphate exerts osteoconductivity through α2β1 integrin and down-stream MAPK/ERK signaling pathway. Biochemical and Biophysical Research Communications, 2010, 394, 323-329.	2.1	55
53	Relationship between nanotopographical alignment and stem cell fate with live imaging and shape analysis. Scientific Reports, 2016, 6, 37909.	3.3	54
54	S100A8/S100A9 and their association with cartilage and bone. Journal of Molecular Histology, 2007, 38, 381-391.	2.2	53

#	Article	IF	CITATIONS
55	Multiple Silk Coatings on Biphasic Calcium Phosphate Scaffolds: Effect on Physical and Mechanical Properties and In Vitro Osteogenic Response of Human Mesenchymal Stem Cells. Biomacromolecules, 2013, 14, 2179-2188.	5.4	53
56	The effect of bioactive glass ceramics on the expression of boneâ€related genes and proteins <i>in vitro</i> . Clinical Oral Implants Research, 2005, 16, 119-127.	4.5	52
57	Unique microstructural design of ceramic scaffolds for bone regeneration under load. Acta Biomaterialia, 2013, 9, 7014-7024.	8.3	51
58	A biphasic scaffold based on silk and bioactive ceramic with stratified properties for osteochondral tissue regeneration. Journal of Materials Chemistry B, 2015, 3, 5361-5376.	5.8	51
59	The functional expression of human bone-derived cells grown on rapidly resorbable calcium phosphate ceramics. Biomaterials, 2004, 25, 335-344.	11.4	49
60	Surface modification of poly(propylene carbonate) by aminolysis and layer-by-layer assembly for enhanced cytocompatibility. Colloids and Surfaces B: Biointerfaces, 2012, 93, 75-84.	5.0	49
61	A novel technique for quantitative detection of mRNA expression in human bone derived cells cultured on biomaterials. , 1996, 33, 217-223.		48
62	Orthopedic coating materials: considerations and applications. Expert Review of Medical Devices, 2009, 6, 423-430.	2.8	46
63	Zirconium Ions Up-Regulate the BMP/SMAD Signaling Pathway and Promote the Proliferation and Differentiation of Human Osteoblasts. PLoS ONE, 2015, 10, e0113426.	2.5	46
64	Fabrication and characterization of a new, strong and bioactive ceramic scaffold for bone regeneration. Materials Letters, 2013, 107, 378-381.	2.6	44
65	A Novel Bone Substitute with High Bioactivity, Strength, and Porosity for Repairing Large and Loadâ€Bearing Bone Defects. Advanced Healthcare Materials, 2019, 8, e1801298.	7.6	43
66	Nanomaterials: the next step in injectable bone cements. Nanomedicine, 2014, 9, 1745-1764.	3.3	41
67	<i>In vitro</i> response of macrophages to ceramic scaffolds used for bone regeneration. Journal of the Royal Society Interface, 2016, 13, 20160346.	3.4	41
68	Fracture behaviors of ceramic tissue scaffolds for load bearing applications. Scientific Reports, 2016, 6, 28816.	3.3	41
69	Porous scaffolds with tailored reactivity modulate in-vitro osteoblast responses. Materials Science and Engineering C, 2012, 32, 1818-1826.	7.3	39
70	Sphene ceramics for orthopedic coating applications: An in vitro and in vivo study. Acta Biomaterialia, 2009, 5, 3192-3204.	8.3	38
71	Nanostructured glass–ceramic coatings for orthopaedic applications. Journal of the Royal Society Interface, 2011, 8, 1192-1203	3.4	36
72	Delicate Refinement of Surface Nanotopography by Adjusting TiO ₂ Coating Chemical Composition for Enhanced Interfacial Biocompatibility. ACS Applied Materials & Interfaces, 2013, 5, 8203-8209.	8.0	36

#	Article	IF	CITATIONS
73	Effect of ion modification of commonly used orthopedic materials on the attachment of human bone-derived cells. , 1999, 45, 345-354.		35
74	Micro-poro-elasticity of baghdadite-based bone tissue engineering scaffolds: A unifying approach based on ultrasonics, nanoindentation, and homogenization theory. Materials Science and Engineering C, 2015, 46, 553-564.	7.3	35
75	Nature-inspired topographies on hydroxyapatite surfaces regulate stem cells behaviour. Bioactive Materials, 2021, 6, 1107-1117.	15.6	35
76	Enhancing orthopedic implant bioactivity: refining the nanotopography. Nanomedicine, 2015, 10, 1327-1341.	3.3	34
77	Osteoblasts on Rod Shaped Hydroxyapatite Nanoparticles Incorporated PCL Film Provide an Optimal Osteogenic Niche for Stem Cell Differentiation. Tissue Engineering - Part A, 2011, 17, 1651-1661.	3.1	33
78	Modulatory effect of simultaneously released magnesium, strontium, and silicon ions on injectable silk hydrogels for bone regeneration. Materials Science and Engineering C, 2019, 94, 976-987.	7.3	33
79	Effects of Sr-HT-Gahnite on osteogenesis and angiogenesis by adipose derived stem cells for critical-sized calvarial defect repair. Scientific Reports, 2017, 7, 41135.	3.3	32
80	Mechanical and chemical properties of Baghdadite coatings manufactured by atmospheric plasma spraying. Surface and Coatings Technology, 2019, 378, 124945.	4.8	31
81	Triple-Bioinspired Burying/Crosslinking Interfacial Coassembly Strategy for Layer-by-Layer Construction of Robust Functional Bioceramic Self-Coatings for Osteointegration Applications. ACS Applied Materials & Interfaces, 2019, 11, 4447-4469.	8.0	31
82	Prosthetic particles modify the expression of bone-related proteins by human osteoblastic cells in vitro. Biomaterials, 2003, 24, 337-346.	11.4	30
83	The Osteoconductivity of Biomaterials Is Regulated by Bone Morphogenetic Protein 2 Autocrine Loop Involving α2β1 Integrin and Mitogen-Activated Protein Kinase/Extracellular Related Kinase Signaling Pathways. Tissue Engineering - Part A, 2010, 16, 3075-3084.	3.1	30
84	Efficacy of novel synthetic bone substitutes in the reconstruction of large segmental bone defects in sheep tibiae. Biomedical Materials (Bristol), 2016, 11, 015016.	3.3	30
85	Bioceramics composition modulate resorption of human osteoclasts. Journal of Materials Science: Materials in Medicine, 2005, 16, 1199-1205.	3.6	29
86	Baghdadite Ceramics Modulate the Cross Talk Between Human Adipose Stem Cells and Osteoblasts for Bone Regeneration. Tissue Engineering - Part A, 2014, 20, 992-1002.	3.1	29
87	Design principles and biological applications of red-emissive two-photon carbon dots. Communications Materials, 2021, 2, .	6.9	29
88	Synergistic effect of nanomaterials and BMP-2 signalling in inducing osteogenic differentiation of adipose tissue-derived mesenchymal stem cells. Nanomedicine: Nanotechnology, Biology, and Medicine, 2015, 11, 219-228.	3.3	28
89	PGA-associated heterotopic chondrocyte cocultures: implications of nasoseptal and auricular chondrocytes in articular cartilage repair. Journal of Tissue Engineering and Regenerative Medicine, 2013, 7, 61-72.	2.7	27
90	Strontium-doped calcium silicate bioceramic with enhanced <i>in vitro</i> osteogenic properties. Biomedical Materials (Bristol), 2017, 12, 035003.	3.3	27

#	Article	IF	CITATIONS
91	Metal ion implantation using a filtered cathodic vacuum arc. Journal of Applied Physics, 2000, 87, 4198-4204.	2.5	26
92	Novel injectable strontium-hardystonite phosphate cement for cancellous bone filling applications. Materials Science and Engineering C, 2019, 97, 103-115.	7.3	26
93	Two-photon ratiometric carbon dot-based probe for real-time intracellular pH monitoring in 3D environment. Chemical Engineering Journal, 2022, 433, 133668.	12.7	26
94	A facile method to in situ formation of hydroxyapatite single crystal architecture for enhanced osteoblast adhesion. Journal of Materials Chemistry, 2012, 22, 19081.	6.7	25
95	A bioceramic with enhanced osteogenic properties to regulate the function of osteoblastic and osteocalastic cells for bone tissue regeneration. Biomedical Materials (Bristol), 2016, 11, 035018.	3.3	25
96	High-Strength Fiber-Reinforced Composite Hydrogel Scaffolds as Biosynthetic Tendon Graft Material. ACS Biomaterials Science and Engineering, 2020, 6, 1887-1898.	5.2	25
97	Bone growth is enhanced by novel bioceramic coatings on Ti alloy implants. Journal of Biomedical Materials Research - Part A, 2009, 90A, 419-428.	4.0	24
98	Effects of Material–Tissue Interactions on Bone Regeneration Outcomes Using Baghdadite Implants in a Large Animal Model. Advanced Healthcare Materials, 2018, 7, e1800218.	7.6	24
99	Ordered HAp nanoarchitecture formed on HAp–TCP bioceramics by "nanocarving―and mineralization deposition and its potential use for guiding cell behaviors. Journal of Materials Chemistry B, 2013, 1, 2455.	5.8	23
100	Chitosan modified Fe ₃ O ₄ /KGN self-assembled nanoprobes for osteochondral MR diagnose and regeneration. Theranostics, 2020, 10, 5565-5577.	10.0	22
101	Mechanically stressed cancer microenvironment: Role in pancreatic cancer progression. Biochimica Et Biophysica Acta: Reviews on Cancer, 2020, 1874, 188418.	7.4	21
102	Personalized Baghdadite scaffolds: stereolithography, mechanics and in vivo testing. Acta Biomaterialia, 2021, 132, 217-226.	8.3	21
103	Hypothesis: Bones Toughness Arises from the Suppression of Elastic Waves. Scientific Reports, 2014, 4, 7538.	3.3	20
104	Nanoparticles: a promising new therapeutic platform for bone regeneration?. Nanomedicine, 2017, 12, 419-422.	3.3	20
105	Influence of carbon dot synthetic parameters on photophysical and biological properties. Nanoscale, 2021, 13, 11138-11149.	5.6	20
106	Injectable radiopaque and bioactive polycaprolactone eramic composites for orthopedic augmentation. Journal of Biomedical Materials Research - Part B Applied Biomaterials, 2015, 103, 1465-1477.	3.4	19
107	Nanostructured gellan and xanthan hydrogel depot integrated within a baghdadite scaffold augments bone regeneration. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1195-1211.	2.7	19
108	Fabrication and Mechanics of Bioinspired Materials with Dense Architectures: Current Status and Future Perspectives. Jom, 2020, 72, 1458-1476.	1.9	19

#	Article	IF	CITATIONS
109	Silk coating on a bioactive ceramic scaffold for bone regeneration: effective enhancement of mechanical and <i>in vitro</i> osteogenic properties towards load-bearing applications. Journal of Tissue Engineering and Regenerative Medicine, 2017, 11, 1741-1753.	2.7	17
110	Reprogramming of human fibroblasts into osteoblasts by insulin-like growth factor-binding protein 7. Stem Cells Translational Medicine, 2020, 9, 403-415.	3.3	17
111	A machine learning-based multiscale model to predict bone formation in scaffolds. Nature Computational Science, 2021, 1, 532-541.	8.0	17
112	Redefining architectural effects in 3D printed scaffolds through rational design for optimal bone tissue regeneration. Applied Materials Today, 2021, 25, 101168.	4.3	17
113	Modification of porous calcium phosphate surfaces with different geometries of bioactive glass nanoparticles. Materials Science and Engineering C, 2012, 32, 830-839.	7.3	16
114	Combination Therapy Using Kartogenin-Based Chondrogenesis and Complex Polymer Scaffold for Cartilage Defect Regeneration. ACS Biomaterials Science and Engineering, 2020, 6, 6276-6284.	5.2	16
115	Fabrication of a novel triphasic and bioactive ceramic and evaluation of its in vitro and in vivo cytocompatibility and osteogenesis. Journal of Materials Chemistry B, 2014, 2, 1866.	5.8	15
116	Inorganic nanoparticles as food additives and their influence on the human gut microbiota. Environmental Science: Nano, 2021, 8, 1500-1518.	4.3	15
117	Radiographic Evaluation of Bone Remodeling Around Osseointegration Implants Among Transfemoral Amputees. Journal of Orthopaedic Trauma, 2019, 33, e303-e308.	1.4	14
118	Effect of Baghdadite Substitution on the Physicochemical Properties of Brushite Cements. Materials, 2019, 12, 1719.	2.9	13
119	Human Bone Derived Cell (HBDC) Behaviour of Sol-Gel Derived Carbonate Hydroxyapatite Coatings on Titanium Alloy Substrates. Key Engineering Materials, 2005, 284-286, 541-544.	0.4	12
120	Porous and strong three-dimensional carbon nanotube coated ceramic scaffolds for tissue engineering. Journal of Materials Chemistry B, 2015, 3, 8337-8347.	5.8	12
121	Highly substituted calcium silicates 3D printed with complex architectures to produce stiff, strong and bioactive scaffolds for bone regeneration. Applied Materials Today, 2021, 25, 101230.	4.3	12
122	Baghdadite coating formed by hybrid water-stabilized plasma spray for bioceramic applications: Mechanical and biological evaluations. Materials Science and Engineering C, 2021, 122, 111873.	7.3	11
123	The effect of polymeric chemistry on the expression of bone-related mRNAs and proteins by human bone-derived cells in vitro. Journal of Biomaterials Science, Polymer Edition, 1999, 10, 199-216.	3.5	10
124	Novel, simple and reproducible method for preparation of composite hierarchal porous structure scaffolds. Materials Letters, 2011, 65, 2578-2581.	2.6	10
125	Baghdadite Ceramics Prevent Senescence in Human Osteoblasts and Promote Bone Regeneration in Aged Rats. ACS Biomaterials Science and Engineering, 2020, 6, 6874-6885.	5.2	10
126	Development of a bioactive and radiopaque bismuth doped baghdadite ceramic for bone tissue engineering. Bone, 2021, 153, 116147.	2.9	10

#	Article	IF	CITATIONS
127	Quantitative aspects of anin situ hybridization procedure for detecting mRNAs in cells using 96-well microplates. Molecular Biotechnology, 1998, 10, 107-113.	2.4	9
128	Proximal Bone Remodeling in Lower Limb Amputees Reconstructed With an Osseointegrated Prosthesis. Journal of Orthopaedic Research, 2019, 37, 2524-2530.	2.3	9
129	Mechanical Properties of Strontium–Hardystonite–Gahnite Coating Formed by Atmospheric Plasma Spray. Coatings, 2019, 9, 759.	2.6	9
130	Preparation and Characteristics of Strontium Containing Bioactive CaSiO ₃ Ceramics. Key Engineering Materials, 0, 330-332, 499-502.	0.4	8
131	Adenoviral transduction is more efficient in alginate-derived chondrocytes than in monolayer chondrocytes. Cell and Tissue Research, 2007, 328, 383-390.	2.9	8
132	Stereolithographic Visible-Light Printing of Poly(<scp> </scp> -glutamic acid) Hydrogel Scaffolds. ACS Biomaterials Science and Engineering, 2022, 8, 1115-1131.	5.2	8
133	Carotid artery stenting in the Zucker rat: a novel, potentially â€ [~] diabetes-specific' model of in-stent restenosis. Diabetes and Vascular Disease Research, 2008, 5, 145-146.	2.0	7
134	Refining nanotopographical features on bone implant surfaces by altering surface chemical compositions. RSC Advances, 2014, 4, 54226-54234.	3.6	7
135	Tuneable manganese oxide nanoparticle based theranostic agents for potential diagnosis and drug delivery. Nanoscale Advances, 2021, 3, 4052-4061.	4.6	7
136	Tissue Response to Biomaterials. , 2019, , 270-277.		5
137	Flexible Terahertz Photonic Light-Cage Modules for In-Core Sensing and High Temperature Applications. ACS Photonics, 2022, 9, 2128-2141.	6.6	5
138	Promise and Perspective of Nanomaterials in Antisenescence Tissue Engineering Applications. ACS Biomaterials Science and Engineering, 2022, 8, 3133-3141.	5.2	5
139	Surface Modification of Bioceramics Affect Osteoblastic Cells Response. Key Engineering Materials, 2003, 240-242, 707-710.	0.4	4
140	Mimicking Bone Microenvironment for Directing Adipose Tissue-Derived Mesenchymal Stem Cells into Osteogenic Differentiation. Methods in Molecular Biology, 2013, 1202, 161-171.	0.9	4
141	Fabrication of bioinspired structured glass–ceramics with enhanced fracture toughness. Journal of Materials Science, 2017, 52, 9202-9210.	3.7	4
142	Evolution of stellated gold nanoparticles: New conceptual insights into controlling the surface processes. Nano Research, 2022, 15, 1260-1268.	10.4	4
143	Human Osteoclasts Behaviour on Sol-Gel Derived Carbonate Hydroxyapatite Coatings on Anodized Titanium Alloy Substrates. Key Engineering Materials, 2006, 309-311, 709-712.	0.4	3
144	Acute coronary stent thrombosis: Toward insights into possible mechanism using novel imaging methods. Thrombosis and Haemostasis, 2008, 99, 976-977.	3.4	3

#	Article	IF	CITATIONS
145	On design for additive manufacturing (DAM) parameter and its effects on biomechanical properties of 3D printed ceramic scaffolds. Materials Today Communications, 2020, 23, 101065.	1.9	3
146	Quantitative Analysis of Osteoprotegerin and RANKL Expression in Osteoblast Grown on Different Calcium Phosphate Ceramics. Key Engineering Materials, 2004, 254-256, 713-716.	0.4	2
147	The Functional Expression of Osteoblasts Grown on Rapidly Resorbable Calcium Phosphates. Key Engineering Materials, 2003, 240-242, 679-682.	0.4	2
148	Probing heteroatoms co-doped graphene quantum dots for energy transfer and 2-photon assisted applications. Journal of Photochemistry and Photobiology A: Chemistry, 2022, 423, 113618.	3.9	2
149	Design and evaluation of 3D-printed Sr-HT-Gahnite bioceramic for FDA regulatory submission: A Good Laboratory Practice sheep study. Acta Biomaterialia, 2023, 156, 214-221.	8.3	2
150	Low-Temperature Synthesis of Hollow β-Tricalcium Phosphate Particles for Bone Tissue Engineering Applications. ACS Biomaterials Science and Engineering, 2022, , .	5.2	2
151	Quantification of the bone-related mRNAs at the bone/prosthetic interface. Journal of Materials Science: Materials in Medicine, 1998, 9, 691-694.	3.6	1
152	Stem Cells for Bone Regeneration: Role of Trophic Factors. , 0, , .		1
153	The Functional Expression of Human Bone-Derived Cells Grown on Rapidly Resorbable Calcium Phosphate Ceramics. Key Engineering Materials, 2003, 254-256, 1059-1062.	0.4	0
154	OPG and Rankl Expression in Osteoblasts Grown on Different HA Ceramics. Key Engineering Materials, 2007, 330-332, 1095-1098.	0.4	0
155	Probable endothelisation of bare metal stent struts extending from the left main coronary into the aorta. Journal of Thrombosis and Thrombolysis, 2010, 30, 500-501.	2.1	0
156	See the extracellular forest for the nanotrees. Materials Today, 2014, 17, 43-44.	14.2	0
157	Hydraulic reactivity and cement formation of baghdadite. Journal of the American Ceramic Society, 2021, 104, 3554-3561.	3.8	0
158	Hybrid system of different shapes of gold nanoparticles on microcavity to study Purcell's effect. , 2020, , .		0